[R-sig-ME] level 1 variance-covariance structure
Sebastián Daza
sebastian.daza at gmail.com
Mon Apr 11 18:43:50 CEST 2011
Hi everyone,
I am trying to reproduce some results models from HLM (HMLM) to contrast
different specifications of level 1 variance-covariance, but I get
convergence errors. I would like to know if there are any problems with
my model specification...
# database structure
head(data[,c(1,2,6, 9:13,17)])
id attit age13 ind1 ind2 ind3 ind4 ind5 ind
1 3 0.11 -2 1 0 0 0 0 1
2 3 0.20 -1 0 1 0 0 0 2
3 3 0.00 0 0 0 1 0 0 3
4 3 0.00 1 0 0 0 1 0 4
5 3 0.11 2 0 0 0 0 1 5
6 8 0.29 -2 1 0 0 0 0 1
# attit is a deviant measure and ind variables indicate different waves
# following some examples of snijders and bosker's book, I get the
unrestricted model:
> m2a <- lme(attit ~ 1 + age13 , data=data, random= ~ 0 + ind1+ ind2+
ind3+ ind4+ ind5 | id, method="REML")
> summary(m2a)
Linear mixed-effects model fit by REML
Data: data
AIC BIC logLik
-326.2096 -236.5348 181.1048
Random effects:
Formula: ~0 + ind1 + ind2 + ind3 + ind4 + ind5 | id
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
ind1 0.17219431 ind1 ind2 ind3 ind4
ind2 0.19789253 0.493
ind3 0.25942942 0.425 0.544
ind4 0.28354459 0.442 0.442 0.723
ind5 0.29097082 0.498 0.474 0.639 0.808
Residual 0.07457025
Fixed effects: attit ~ 1 + age13
Value Std.Error DF t-value p-value
(Intercept) 0.3210558 0.012832840 839 25.01829 0
age13 0.0593529 0.004716984 839 12.58282 0
Correlation:
(Intr)
age13 0.504
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.46371871 -0.27170442 -0.04080686 0.26239553 1.69883910
Number of Observations: 1079
Number of Groups: 239
# variance-covariance matrix
> extract.lme.cov2(m2a,data)$V[[6]]
25 26 27 28 29
25 0.03521160 0.01681647 0.01899029 0.02159300 0.02494013
26 0.01681647 0.04472218 0.02793174 0.02481343 0.02727012
27 0.01899029 0.02793174 0.07286434 0.05318967 0.04823107
28 0.02159300 0.02481343 0.05318967 0.08595826 0.06667139
29 0.02494013 0.02727012 0.04823107 0.06667139 0.09022474
# I get the same results than unrestricted model in HLM
# When I try to get the same unrestricted model using "corStruc"
commands in lme, I get a convergence problem. Am I reproducing the model
m2a?
> m2b <- lme(attit ~ 1 + age13 , data=data, random= ~ age13 | id,
correlation = corSymm(, form = ~ ind | id))
Error in lme.formula(attit ~ 1 + age13, data = data, random = ~age13 | :
nlminb problem, convergence error code = 1
message = iteration limit reached without convergence (9)
# When I try to get an autoregressive model, I get again a convergence
problem.
> m3a <- lme(attit ~ 1 + age13 , data=data, random= ~ age13 | id,
correlation = corAR1(, form = ~ ind | id))
Error in lme.formula(attit ~ 1 + age13, data = data, random = ~age13 | :
nlminb problem, convergence error code = 1
message = iteration limit reached without convergence (9)
Does anyone know how I can solve this?
Thank you in advance.
--
Sebastián Daza
sebastian.daza at gmail.com
More information about the R-sig-mixed-models
mailing list