[R-sig-ME] Modeling for a zero-inflated continuous response
Erin Latham
els.latham at gmail.com
Tue Nov 30 23:20:13 CET 2010
Hi R list,
I'm attempting to model a continuous response (CHANGEM) using three
variables (SLOPE, ASPECT, ELEVATION).
> str(sheep)
'data.frame': 419 obs. of 10 variables:
$ SITE : Factor w/ 4 levels "Gibbs","Langley",..: 1 1 1 1 1 1 1 1 1 1
...
$ AREACODE : Factor w/ 20 levels "Aspect1","Aspect2",..: 2 2 2 2 2 2 2 2 3
3 ...
$ GRID : int 0 3 4 5 6 1 2 7 0 4 ...
$ SLOPE : num 40.8 30 59.7 44.8 56.1 56.7 60.7 47.2 36.6 25.1 ...
$ ASPECT : num 0.7597 -0.4677 0.0963 0.2272 -0.2194 ...
$ ELEVATION: int 2576 2757 2521 2659 2562 2725 2627 2657 2221 2242 ...
$ LATITUDE : Factor w/ 2 levels "n","s": 1 1 1 1 1 1 1 1 1 1 ...
$ CHANGEM : num 0 0 0 0 0 ...
$ CHANGEP : num 0 0 0 0 0 ...
$ VEG : Factor w/ 18 levels "","BA","BL","BM",..: 1 1 1 1 1 1 1 1 1 1
...
I performed a change analysis with an unbalanced hierarchical sample design.
I interpreted usually 8 grids (GRID) (sometimes less) from each AREACODE of
each SITE. There are 4 sites with 8 to 19 sub-plots (AREACODEs) for a total
of 419 total grids analyzed.
My problem is that the response has many zeroes (260/419 grids). The
response was calculated as a change detection between two dates, and the
units are square meters. Technically I performed the change based on a grid,
so it could be considered a proportion or change as percent cover, as well
(CHANGEP). Besides the zeros, the data is normally distributed.
I found this helpful post by Ben Bolker, but I'm uncertain how to go about
modeling the zeroes as part of the mixture process when the distribution is
otherwise normal.
http://permalink.gmane.org/gmane.comp.lang.r.lme4.devel/3454
I'm been reading Bolker (2007), but I'm a bit stuck translating the
discussion to code.
Any help is greatly appreciated.
Thank you.
--
Erin Latham, M.GIS
More information about the R-sig-mixed-models
mailing list