[R-sig-ME] lmer vs SAS results
David Duffy
davidD at qimr.edu.au
Wed Nov 24 01:16:46 CET 2010
On Tue, 23 Nov 2010, Beth Holbrook wrote:
lme4:
> Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
> model3 4 214.21 229.98 -103.103
> model2 9 215.26 250.74 -98.628 8.9494 5 0.1111
> model1 14 219.15 274.35 -95.575 6.1062 5 0.2960
>
SAS:
> AIC BIC -2 Log Likelihood
> model1 216.7 251.1 188.7
> model2 213.3 235.4 195.3
> model3 214.2 224.0 206.2
>
Well, SAS agrees with lme here (with method="ML"):
Model df AIC BIC logLik Test L.Ratio p-value
m1 14 216.7262 271.9254 -94.36309 1 vs 2 6.59408 0.2526
m2 9 213.3203 248.8055 -97.66013 2 vs 3 10.88519 0.0537
m3 4 214.2055 229.9767 -103.10273
Directly maximizing the likelihood (using AS319), I get the
m2 v. m3 LRTS to be 10.8852.
I haven't evaluated likelihood at the lmer and SAS solutions yet, but
obviously the likelihood surface will be fairly flat.
Cheers, David Duffy.
--
| David Duffy (MBBS PhD) ,-_|\
| email: davidD at qimr.edu.au ph: INT+61+7+3362-0217 fax: -0101 / *
| Epidemiology Unit, Queensland Institute of Medical Research \_,-._/
| 300 Herston Rd, Brisbane, Queensland 4029, Australia GPG 4D0B994A v
More information about the R-sig-mixed-models
mailing list