[R-sig-ME] different aic and LL in glmer(lme4) and glimmix(SAS)?
Jeffrey Evans
Jeffrey.Evans at dartmouth.edu
Thu Jul 1 18:03:52 CEST 2010
Hello All,
I have read several posts related to this previously, but haven't found any
resolution yet. When running the same GLMM in glmer and in SAS PROC GLIMMIX,
both programs return comparable parameter estimates, but wildly different
likelihoods and AIC values.
In SAS I specify use of the Laplace approximation. In R, I believe this is
the default (no?).
What's the difference, and [how] can I reproduce the SAS -2ll in glmer?
Thanks,
Jeff
\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
> R_GLMM = glmer(cbind(SdlFinal, SdlMax-SdlFinal) ~ lnsdlmaxd*lnadultssdld +
(1|ID),data=sdlPCAdat,family="binomial")
> R_GLMM
Generalized linear mixed model fit by the Laplace approximation
Formula: cbind(SdlFinal, SdlMax - SdlFinal) ~ lnsdlmaxd * lnadultssdld +
(1 | ID)
Data: sdlPCAdat
AIC BIC logLik deviance
1150 1165 -570 1140 <------------------ this line!!
Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 1.2491 1.1176
Number of obs: 144, groups: ID, 48
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.56964 0.43148 10.591 < 2e-16 ***
lnsdlmaxd -0.65936 0.05686 -11.595 < 2e-16 ***
lnadultssdld -0.64534 0.15861 -4.069 4.73e-05 ***
lnsdlmaxd:lnadultssdld 0.07393 0.02166 3.414 0.00064 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) lnsdlm lndlts
lnsdlmaxd -0.923
lnadltssdld -0.461 0.479
lnsdlmxd:ln 0.482 -0.508 -0.994
\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/
title 'SAS GLMM';
proc glimmix data=sdlPCAdat ic=pq noitprint method=laplace;
class site id;
model sdlfinal/sdlmax = lnsdlmaxd|lnadultssdld/ solution dist=binomial;
random ID /;
covtest glm/wald;
run;
//////////////////////////////////////////////////////////////////////
SAS GLMM 19:36 Wednesday, June 30, 2010 88
The GLIMMIX Procedure
Data Set WORK.SDLPCADAT
Response Variable (Events) SdlFinal
Response Variable (Trials) SdlMax
Response Distribution Binomial
Link Function Logit
Variance Function Default
Variance Matrix Not blocked
Estimation Technique Maximum Likelihood
Likelihood Approximation Laplace
Degrees of Freedom Method Containment
Optimization Information
Optimization Technique Dual Quasi-Newton
Parameters in Optimization 5
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Not Profiled
Starting From GLM estimates
Convergence criterion (GCONV=1E-8) satisfied.
Fit Statistics
-2 Log Likelihood 1653.90 <------------------ this
line!!
AIC (smaller is better) 1663.90
AICC (smaller is better) 1664.33
BIC (smaller is better) 1673.25
CAIC (smaller is better) 1678.25
HQIC (smaller is better) 1667.43
Fit Statistics for Conditional Distribution
-2 log L(SdlFinal | r. effects) 1436.44
Pearson Chi-Square 908.07
Pearson Chi-Square / DF 6.31
Covariance Parameter Estimates
Cov Standard Z
Parm Estimate Error Value Pr > Z
ID 1.2491 0.2746 4.55 <.0001
Solutions for Fixed Effects
Standard
Effect Estimate Error DF t Value Pr > |t|
Intercept 4.5696 0.4333 47 10.55 <.0001
lnsdlmaxd -0.6594 0.05717 93 -11.53 <.0001
lnadultssdld -0.6453 0.1593 93 -4.05 0.0001
lnsdlmaxd*lnadultssd0.07394 0.02174 93 3.40 0.0010
More information about the R-sig-mixed-models
mailing list