[R-sig-ME] modeling spatial autocorrelation and heteroscedascity with gls / nlme
Guido Lorenz
glorenz2000 at yahoo.com
Wed Apr 14 23:08:02 CEST 2010
Dear R users,
my question is about groupwise modeling of spatial autocorrelation in mixed effect models: In a soil study, five different sites are to be compared respect to specific soil properties. A regular sampling grid with 32 points in each site was applied. Due to heteroscedascity and a supposed spatial correlation of the data, a mixed effects model was formulated, with the "site" (ID.sitio) as a fixed effect, and different variances and spatial autocorrelation, also stratified by the same factor, "site", using the gls module of nlme package:
> lmm.dap3a <- gls(Dap.sa ~ 1 + ID.sitio, Pd2006mm, correlation=corSpher(form=~(easting.m+northing.m)|ID.sitio, nugget=TRUE, metric="euclidean"), weights=varIdent(form=~1|ID.sitio), na.action=na.omit, method="REML")
> summary(lmm.dap3a)
Generalized least squares fit by REML
Model: Dap.sa ~ 1 + ID.sitio
Data: Pd2006mm
AIC BIC logLik
-280.4552 -243.9341 152.2276
Correlation Structure: Spherical spatial correlation
Formula: ~(easting.m + northing.m) | ID.sitio
Parameter estimate(s):
range nugget
17.7285895 0.2560010
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | ID.sitio
Parameter estimates:
pag1 pag2 pag3 pag4 pag5
1.0000000 1.4464638 0.6195818 1.0094856 0.7684725
Coefficients:
Value Std.Error t-value p-value
(Intercept) 1.3930856 0.03141931 44.33851 0.0000
ID.sitiopag2 0.0520236 0.05601737 0.92871 0.3545
ID.sitiopag3 -0.1816564 0.03708524 -4.89835 0.0000
ID.sitiopag4 0.0160424 0.04424861 0.36255 0.7174
ID.sitiopag5 -0.1334217 0.03983743 -3.34915 0.0010
Correlation:
(Intr) ID.st2 ID.st3 ID.st4
ID.sitiopag2 -0.561
ID.sitiopag3 -0.847 0.475
ID.sitiopag4 -0.710 0.398 0.602
ID.sitiopag5 -0.789 0.442 0.668 0.560
Standardized residuals:
Min Q1 Med Q3 Max
-2.24247234 -0.61313647 -0.01625797 0.67134893 2.21471264
Residual standard error: 0.1117062
Degrees of freedom: 160 total; 155 residual
Nevertheless, the output shows that the variances were described as group-specific, but the spatial correlation is expressed as a unique semivariogram for all the sites. Supposing that spatial correlation may be also specific for each sampling unit, how can one specify the model to account for this, using the gls or or some other algorithm?
Thanks in advance for any advice,
Guido Lorenz
More information about the R-sig-mixed-models
mailing list