[R-meta] rma.mv: why some var components change but others don't across 2 models
Stefanou Revesz
@te|@noureve@z @end|ng |rom gm@||@com
Sat Oct 30 15:05:32 CEST 2021
Dear Wolfgang,
Thank you for your reply. I did check that previously. But my question is
why 'outcome' gives the same variance component across both res (with 4
levels) and res2 (with 68 levels) models?
Thank you so much,
Stefanou
On Sat, Oct 30, 2021, 7:08 AM Viechtbauer, Wolfgang (SP) <
wolfgang.viechtbauer using maastrichtuniversity.nl> wrote:
> Dear Stefanou,
>
> With the way you have 'outcome' coded, these two formulations are not
> equivalent. I believe this post discusses this:
>
> https://stat.ethz.ch/pipermail/r-sig-meta-analysis/2018-July/000896.html
>
> Best,
> Wolfgang
>
> >-----Original Message-----
> >From: Stefanou Revesz [mailto:stefanourevesz using gmail.com]
> >Sent: Friday, 29 October, 2021 17:24
> >To: R meta
> >Cc: Viechtbauer, Wolfgang (SP)
> >Subject: rma.mv: why some var components change but others don't across
> 2 models
> >
> >Dear Wolfgang and Expert List Members,
> >
> >Why `study` with 57 levels in model `res` gives `sigma^2.1 = 0.0200`
> >but `study` with 57 levels in model `res2` gives `sigma^2.1 =
> >0.0122`?
> >(SAME LEVELS BUT DIFFERENT RESULTS)
> >
> >Why `outcome` with 4 levels in model `res` gives `sigma^2.2 = 0.0093`
> >but `outcome` with 68 levels in model `res2` gives `sigma^2.2 =
> >0.0093`?
> >(DIFFERENT LEVELS BUT SAME RESULTS)
> >
> >For reproducibility, below are my data and code.
> >
> >Many thanks to you all,
> >Stefanou
> >
> >m <- read.csv("https://raw.githubusercontent.com/fpqq/w/main/c.csv")
> >
> >res <- rma.mv(yi, vi, random = list(~ 1 | study, ~1|outcome, ~ 1 |
> >measure), data=m)
> > estim sqrt nlvls fixed factor
> >sigma^2.1 0.0200 0.1415 57 no study
> >sigma^2.2 0.0093 0.0964 4 no outcome
> >sigma^2.3 0.0506 0.2249 7 no measure
> >
> >res2 <- rma.mv(yi, vi, random = list(~ 1 | study/outcome, ~ 1 |
> >measure), data=m)
> > estim sqrt nlvls fixed factor
> >sigma^2.1 0.0122 0.1105 57 no study
> >sigma^2.2 0.0093 0.0964 68 no study/outcome
> >sigma^2.3 0.0363 0.1904 7 no measure
>
[[alternative HTML version deleted]]
More information about the R-sig-meta-analysis
mailing list