[R-meta] rma.mv: why some var components change but others don't across 2 models
Viechtbauer, Wolfgang (SP)
wo||g@ng@v|echtb@uer @end|ng |rom m@@@tr|chtun|ver@|ty@n|
Sat Oct 30 14:08:21 CEST 2021
Dear Stefanou,
With the way you have 'outcome' coded, these two formulations are not equivalent. I believe this post discusses this:
https://stat.ethz.ch/pipermail/r-sig-meta-analysis/2018-July/000896.html
Best,
Wolfgang
>-----Original Message-----
>From: Stefanou Revesz [mailto:stefanourevesz using gmail.com]
>Sent: Friday, 29 October, 2021 17:24
>To: R meta
>Cc: Viechtbauer, Wolfgang (SP)
>Subject: rma.mv: why some var components change but others don't across 2 models
>
>Dear Wolfgang and Expert List Members,
>
>Why `study` with 57 levels in model `res` gives `sigma^2.1 = 0.0200`
>but `study` with 57 levels in model `res2` gives `sigma^2.1 =
>0.0122`?
>(SAME LEVELS BUT DIFFERENT RESULTS)
>
>Why `outcome` with 4 levels in model `res` gives `sigma^2.2 = 0.0093`
>but `outcome` with 68 levels in model `res2` gives `sigma^2.2 =
>0.0093`?
>(DIFFERENT LEVELS BUT SAME RESULTS)
>
>For reproducibility, below are my data and code.
>
>Many thanks to you all,
>Stefanou
>
>m <- read.csv("https://raw.githubusercontent.com/fpqq/w/main/c.csv")
>
>res <- rma.mv(yi, vi, random = list(~ 1 | study, ~1|outcome, ~ 1 |
>measure), data=m)
> estim sqrt nlvls fixed factor
>sigma^2.1 0.0200 0.1415 57 no study
>sigma^2.2 0.0093 0.0964 4 no outcome
>sigma^2.3 0.0506 0.2249 7 no measure
>
>res2 <- rma.mv(yi, vi, random = list(~ 1 | study/outcome, ~ 1 |
>measure), data=m)
> estim sqrt nlvls fixed factor
>sigma^2.1 0.0122 0.1105 57 no study
>sigma^2.2 0.0093 0.0964 68 no study/outcome
>sigma^2.3 0.0363 0.1904 7 no measure
More information about the R-sig-meta-analysis
mailing list