[R-meta] Different outputs by comparing random-effects model with a MLMA without intercept
Rafael Rios
b|or@|@e|rm @end|ng |rom gm@||@com
Thu Mar 7 17:46:19 CET 2019
Dear Wolfgang and All,
I am conducting a meta-analysis to evaluate potential bias of a fixed
predictor with two subgroups (predictor: yes and no). Because I found a
bias, I removed the values of subgroup "yes" and performed a random-effects
model. However, when I compared the output of the first model without
intercept with the output of the random effects model, I obtained different
results, especially in the estimation of confidence intervals. I was
expecting to found similar results because the model without intercept
tests if the average outcome differs from zero. Can you explain in which
case this can happen? Every help is welcome.
model1=rma.mv(yi, vi, mods=~predictor-1, random = list (~1|effectsizeID,
~1|studyID, ~1|speciesID), R=list(speciesID=phylogenetic_correlation),
data=h)
#Multivariate Meta-Analysis Model (k = 1850; method: REML)
#
#Variance Components:
# estim sqrt nlvls fixed factor R
#sigma^2.1 0.0145 0.1204 1850 no effectsizeID no
#sigma^2.2 0.0195 0.1397 468 no studyID no
#sigma^2.3 0.2386 0.4885 348 no speciesID yes
#
#Test for Residual Heterogeneity:
#QE(df = 1848) = 10797.5993, p-val < .0001
#
#Test of Moderators (coefficients 1:2):
#QM(df = 2) = 17.6736, p-val = 0.0001
#
*#Model Results:*
*# estimate se zval pval
ci.lb <http://ci.lb> ci.ub *
*#potential_sceno 0.2843 0.1659 1.7141 0.0865 -0.0408 0.6095 *.
#potential_sceyes 0.3741 0.1668 2.2421 0.0250 0.0471 0.7011 *
#---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
model2=rma.mv(zf, vzf, random = list (~1|effectsizeID, ~1|studyID,
~1|speciesID), R=list(speciesID=phylogenetic_correlation),
data=subset(h,potential_sce=="no"))
#Multivariate Meta-Analysis Model (k = 1072; method: REML)
#
#Variance Components:
# estim sqrt nlvls fixed factor R
#sigma^2.1 0.0140 0.1184 1072 no effectsizeID no
#sigma^2.2 0.0394 0.1986 264 no studyID no
#sigma^2.3 0.0377 0.1943 240 no speciesID yes
#
#Test for Heterogeneity:
#Q(df = 1071) = 4834.5911, p-val < .0001
#
*#Model Results:*
*#estimate se zval pval ci.lb <http://ci.lb> ci.ub *
*# 0.2989 0.0720 4.1494 <.0001 0.1577 0.4401 *** *
#---
#Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
I used another data set to conduct the same approach and obtained similar
results:
dat <- dat.bangertdrowns2004
rbind(head(dat, 10), tail(dat, 10))
dat <- dat[!apply(dat[,c("length", "wic", "feedback", "info", "pers",
"imag", "meta")], 1, anyNA),]
head(dat)
random.model=rma.mv(yi, vi, random=list(~1|id, ~1|author), structure="UN",
data=subset(dat, subject=="Math"))
random.model
*#Math*
*#Model Results:*
*# estimate se zval pval ci.lb <http://ci.lb> ci.ub *
*# 0.2106 0.0705 2.9899 0.0028 0.0726 0.3487 ***
mixed.model=rma.mv(yi, vi, mods=~subject-1, random=list(~1|id, ~1|author),
structure="UN", data=dat)
anova(mixed.model,btt=2)
*#Math*
*# estimate se zval pval ci.lb <http://ci.lb> ci.ub*
*# 0.2100 0.0697 3.0122 0.0026 0.0734 0.3467*
Best wishes,
Rafael.
__________________________________________________________
Dr. Rafael Rios Moura
*scientia amabilis*
Behavioral Ecologist, Ph.D.
Postdoctoral Researcher
Universidade Estadual de Campinas (UNICAMP)
Campinas, São Paulo, Brazil
ORCID: http://orcid.org/0000-0002-7911-4734
Currículo Lattes: http://lattes.cnpq.br/4264357546465157
Research Gate: https://www.researchgate.net/profile/Rafael_Rios_Moura2
<http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4244908A8>
[[alternative HTML version deleted]]
More information about the R-sig-meta-analysis
mailing list