[R-meta] standard error in predictive nonlinear meta-regression
Cesar Terrer Moreno
cesar.terrer at me.com
Sat Jan 20 19:08:06 CET 2018
Hi Wolfgang,
Thanks for your response.
Do you know how I could apply this model to predict effect size on a grid (i.e. on a per pixel basis) for the entire world, with known MAP (precipitation) and MAT (temperature) per pixel coming from maps, and a fix COdif=300?
Something like:
ECMrelSE <- overlay(s[["temperature"]], s[["precipitation"]], # raster maps for MAT and MAP, respectively
fun=predict(ECMmeta, newmods = c(MAP, MAT, 300, MAT*300)))
The above doesn’t work.
Thanks
César
> On 20 Jan 2018, at 10:33, Viechtbauer Wolfgang (SP) <wolfgang.viechtbauer at maastrichtuniversity.nl> wrote:
>
> Use predict(). In this case:
>
> predict(ECMmeta, newmods = c(2, 3, 4, 3*4))
>
> where MAP=2, MAT=3, CO2dif=4, and hence MAT*CO2dif=3*4.
>
> Best,
> Wolfgang
>
>> -----Original Message-----
>> From: R-sig-meta-analysis [mailto:r-sig-meta-analysis-bounces at r-
>> project.org] On Behalf Of Cesar Terrer Moreno
>> Sent: Friday, 19 January, 2018 13:45
>> To: r-sig-meta-analysis at r-project.org
>> Subject: [R-meta] standard error in predictive nonlinear meta-regression
>>
>> Dear all,
>>
>> Yesterday I could solve my question re SE in a nonlinear model following
>> Phillip and Wolfgang’s great suggestions using the delta method.
>>
>> Now I need to compute SE for a linear meta-regression:
>>
>>> summary(ECMmeta <- rma(es, var, data=ecm ,control=list(stepadj=.5),
>> mods= ~ 1 + MAP + MAT*CO2dif, knha=TRUE))
>>
>> Model Results:
>>
>> estimate se tval pval ci.lb ci.ub
>> intrcpt 0.5754 0.1828 3.1481 0.0031 0.2057 0.9451 **
>> MAP 0.0002 0.0001 2.6648 0.0111 0.0000 0.0003 *
>> MAT -0.0589 0.0179 -3.2842 0.0022 -0.0952 -0.0226 **
>> CO2dif -0.0019 0.0007 -2.7384 0.0093 -0.0032 -0.0005 **
>> MAT:CO2dif 0.0002 0.0001 3.6366 0.0008 0.0001 0.0003 ***
>>
>> How can I compute SE for a particular pixel with known MAP, MAT and
>> CO2dif?
>> Thanks
More information about the R-sig-meta-analysis
mailing list