[R-meta] standard error in predictive nonlinear meta-regression
Viechtbauer Wolfgang (SP)
wolfgang.viechtbauer at maastrichtuniversity.nl
Sat Jan 20 10:33:06 CET 2018
Use predict(). In this case:
predict(ECMmeta, newmods = c(2, 3, 4, 3*4))
where MAP=2, MAT=3, CO2dif=4, and hence MAT*CO2dif=3*4.
Best,
Wolfgang
>-----Original Message-----
>From: R-sig-meta-analysis [mailto:r-sig-meta-analysis-bounces at r-
>project.org] On Behalf Of Cesar Terrer Moreno
>Sent: Friday, 19 January, 2018 13:45
>To: r-sig-meta-analysis at r-project.org
>Subject: [R-meta] standard error in predictive nonlinear meta-regression
>
>Dear all,
>
>Yesterday I could solve my question re SE in a nonlinear model following
>Phillip and Wolfgang’s great suggestions using the delta method.
>
>Now I need to compute SE for a linear meta-regression:
>
>> summary(ECMmeta <- rma(es, var, data=ecm ,control=list(stepadj=.5),
>mods= ~ 1 + MAP + MAT*CO2dif, knha=TRUE))
>
>Model Results:
>
> estimate se tval pval ci.lb ci.ub
>intrcpt 0.5754 0.1828 3.1481 0.0031 0.2057 0.9451 **
>MAP 0.0002 0.0001 2.6648 0.0111 0.0000 0.0003 *
>MAT -0.0589 0.0179 -3.2842 0.0022 -0.0952 -0.0226 **
>CO2dif -0.0019 0.0007 -2.7384 0.0093 -0.0032 -0.0005 **
>MAT:CO2dif 0.0002 0.0001 3.6366 0.0008 0.0001 0.0003 ***
>
>How can I compute SE for a particular pixel with known MAP, MAT and
>CO2dif?
>Thanks
More information about the R-sig-meta-analysis
mailing list