[R-SIG-Mac] Is R more heavy on memory or processor?
Steven McKinney
smckinney at bccrc.ca
Tue Mar 24 20:40:15 CET 2009
I agree with Dan, memory will often be the limiting
factor. I added RAM (16GB total) to my ppc and have
had a much more productive environment, both for
32 bit and 64 bit applications.
Even if a single R session cannot benefit from multiple
cores, if you can break your processes into parallel
pieces you can use your separate CPUs with cluster
software, or just run multiple R jobs manually.
I'd recommend maximizing your RAM quantity over
RAM speed. Also, determine the speed gain.
Speed gains of 10-fold or more are noticeable,
speed gains of 2 to 3 fold rarely make much of a
difference.
Steven McKinney, Ph.D.
Statistician
Molecular Oncology and Breast Cancer Program
British Columbia Cancer Research Centre
email: smckinney +at+ bccrc +dot+ ca
tel: 604-675-8000 x7561
BCCRC
Molecular Oncology
675 West 10th Ave, Floor 4
Vancouver B.C.
V5Z 1L3
Canada
-----Original Message-----
From: r-sig-mac-bounces at stat.math.ethz.ch on behalf of Dan Putler
Sent: Tue 3/24/2009 12:08 PM
To: Booman, M
Cc: R-SIG-Mac
Subject: Re: [R-SIG-Mac] Is R more heavy on memory or processor?
Hi Marije,
Personally, I would be more concerned with memory than processor.
Running out of memory can be an unpleasant surprise. Base R uses a
single core, but Simon Urbanek's multicore package (the most recent
version of which, 0.1-3, is dated today) does allow you to use multiple
cores at once. I haven't used this package, so can't offer any personal
experience.
Dan
On Tue, 2009-03-24 at 19:55 +0100, Booman, M wrote:
> Dear all,
>
> I am going to purchase a Power Mac (a new one, with Nehalem processor) for my R-based microarray analyses. I use mainly Bioconductor packages, and a typical dataset would consist of 50 microarrays with 40,000 datapoints each. To make the right choice of processor and memory, I have a few questions:
>
> - would the current version of R benefit from the 8 cores in the new Intel Xeon Nehalem 8-core Mac Pro? So would an 8-core 2.26GHz machine be better than a 4-core 2.93GHz? Or can R only use one core (in which case the 4-core 2.93GHZ machine would be better)?
>
> - If R does not benefot from multiple cores yet, is there anything known about whether Snow Leopard might make a difference in this?
>
> - To determine if my first priority should be processor speed or RAM, on which does R rely more heavily?
>
> - The new chipset has 3 memory channels (forgive me if I word this wrong, as you may have noticed I am no computer tech) so it can read 6Gb RAM faster than it can read 8Gb of RAM; so for a program that relies more on RAM speed than RAM quantity it is recommended to use 6Gb instead of 8 for better performance (or any multiple of 3). Which is more important for R, RAM speed or RAM quantity?
>
> (I am not sure if it helps to know, but previously I used a Powermac G5 quadcore (sadly I forgot which processor speed but it was the standard G5 quadcore) with 4 Gb RAM for datasets of 30-40 microarrays of 18,000 datapoints each, and analysis was OK except for some memory errors in a script that used permutation analysis; but it wasn't very fast.)
>
> Any recommendations are welcome!
>
> Marije Booman
>
>
> De inhoud van dit bericht is vertrouwelijk en alleen bestemd voor de geadresseerde(n). Anderen dan de geadresseerde(n) mogen geen gebruik maken van dit bericht, het niet openbaar maken of op enige wijze verspreiden of vermenigvuldigen. Het UMCG kan niet aansprakelijk gesteld worden voor een incomplete aankomst of vertraging van dit verzonden bericht.
>
> The contents of this message are confidential and only intended for the eyes of the addressee(s). Others than the addressee(s) are not allowed to use this message, to make it public or to distribute or multiply this message in any way. The UMCG cannot be held responsible for incomplete reception or delay of this transferred message.
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-SIG-Mac mailing list
> R-SIG-Mac at stat.math.ethz.ch
> https://stat.ethz.ch/mailman/listinfo/r-sig-mac
--
Dan Putler
Sauder School of Business
University of British Columbia
_______________________________________________
R-SIG-Mac mailing list
R-SIG-Mac at stat.math.ethz.ch
https://stat.ethz.ch/mailman/listinfo/r-sig-mac
More information about the R-SIG-Mac
mailing list