[R-sig-Geo] different Moran's I results using R and matlab
Roger Bivand
Roger.Bivand at nhh.no
Sat Mar 5 20:39:06 CET 2016
On Fri, 4 Mar 2016, Roger Bivand wrote:
> On Thu, 3 Mar 2016, Roger Bivand wrote:
>
>> On Thu, 3 Mar 2016, Qiuhua Ma wrote:
>>
>> > Hi,
>> >
>> > I run the exactly same regression using R and matlab and get the same
>> > regression results.
>>
>> Well, you need to give the exact reference to the matlab code you have
>> used - are they the functions in Spatial Econometrics Toolbox under
>> spatial/stats? I do not see the robust variants there.
>>
>> Most likely the data or the weights are different. Make your data set
>> available on a link, and I'll take a look.
>
> Having not heard back, I ran moran() and lmerror() in Matlab using the
> Spatial Econometrics Toolbox on the data presented in stats/moran_d.m:
>
> load anselin.dat;
>
> y = anselin(:,1);
> n = length(y);
>
> x = [ones(n,1) anselin(:,2:3)];
>
> xc = anselin(:,4);
> yc = anselin(:,5);
> [j W j] = xy2cont(xc,yc);
>
> result = moran(y,x,W);
>
>> tests$result
> , , 1
>
> [,1]
> meth "moran"
> nobs 49
> nvar 3
> morani 0.2861962
> istat 4.019423
> imean -0.03180435
> ivar 0.006259337
> prob 5.834084e-05
>
> (R result after moving the input data from Matlab to R with
> R.matlab::readMat())
>
>> lm.morantest(lm_obj, lw, alternative="two.sided")
>
> Global Moran I for regression residuals
>
> data:
> model: lm(formula = y ~ x - 1)
> weights: lw
>
> Moran I statistic standard deviate = 4.0194, p-value = 5.834e-05
> alternative hypothesis: two.sided
> sample estimates:
> Observed Moran I Expectation Variance
> 0.286196209 -0.031804345 0.006259337
>
> [SAME RESULT]
>
> and similarly with lmerror()
>
>> tests$result2
> , , 1
>
> [,1]
> meth "lmerror"
> lm 10.7656
> prob 0.001034042
> chi1 17.611
> nobs 49
> nvar 3
>
>
>> lm.LMtests(lm_obj, lw)
>
> Lagrange multiplier diagnostics for spatial dependence
>
> data:
> model: lm(formula = y ~ x - 1)
> weights: lw
>
> LMErr = 10.766, df = 1, p-value = 0.001034
>
> [SAME RESULT]
>
> The result for lmlag() differs, probably because the Matlab code uses two
> different values for sigma and epe:
This is definitely the case - setting
>
> sigma = (e'*e)/(n-k);
>
> epe = (e'*e)/n;
sigma = epe;
gives exactly the same results as test="LMlag" in spdep::lm.LMtests()
So the reported differences are due to 1) the user not using the same
data in R and Matlab, and 2) the Matlab code being undecided about
dividing the sum of squared errors by n or n-k, and consequently making
choices that might seem sensible but aren't fully supported in the
underlying article.
Roger
> lm1 = (e'*W*y)/epe;
>
> t1 = trace((W+W')*W);
> D1=W*x*b;
> M=eye(n)-x*inv((x'*x))*x';
> D=(D1'*M*D1)*(1/sigma)+t1;
>
> lmlag = (lm1*lm1)*(1/D);
>
> so does not match the R code which follows Eq. 13 in Anselin et al. (1996, p.
> 84) in dividing the sum of squared errors by n, not n-k.
>
> I have not found lmlag_robust() or lmerror_robust() anywhere.
>
> Please provide the code of these functions if you need further clarification
> - the R code for the Moran's I test on OLS residuals is OK, as is the LM
> error test. The LM lag test chooses a version using ML sigma in harmony with
> the source article.
>
> Roger
>
>>
>> Roger
>>
>> >
>> > However I got different results for Moran't I test and LM test results.
>> >
>> > *R command:*
>> > nb4 <- knn2nb(knearneigh(sale.sp, k = 4))
>> > knn4listw <- nb2listw(nb4, style="W")
>> >
>> > lm.morantest(near7_comrisk_semilog.out, knn4listw)
>> > lm.LMtests(near7_comrisk_semilog.out, knn4listw, test=c("LMerr",
>> > "LMlag",
>> > "RLMerr", "RLMlag"))
>> >
>> > *R results:*
>> > Moran I statistic standard deviate = 1.4135, p-value = 0.07875
>> > Observed Moran's I Expectation Variance
>> > 8.780168e-03 -2.762542e-04 4.104967e-05
>> >
>> > LMerr = 1.8752, df = 1, p-value = 0.1709
>> > LMlag = 0.14335, df = 1, p-value = 0.705
>> > RLMerr = 2.1193, df = 1, p-value = 0.1455
>> > RLMlag = 0.38741, df = 1, p-value = 0.5337
>> >
>> > *Matlab command:*
>> > W_sale_4 = make_nnw(xc,yc,4);
>> >
>> > moran4= moran(y,x, W_sale_4)
>> > error_4 = lmerror(y,x,W_sale_4)
>> > lag_4 = lmlag(y,x,W_sale_4)
>> > error_4r = lmerror_robust(y,x,W_sale_4)
>> > lag_4r = lmlag_robust(y,x,W_sale_4)
>> >
>> > *Matlab results:*
>> > Moran I-test for spatial correlation in residuals
>> > Moran I 0.13979528
>> > Moran I-statistic 22.05018073
>> > Marginal Probability 0.00000000
>> > mean -0.00126742
>> > standard deviation 0.00639735
>> >
>> > error_4 =
>> > meth: 'lmerror'
>> > lm: 475.1839
>> > prob: 0
>> > chi1: 17.6110
>> >
>> >
>> > lag_4 =
>> > meth: 'lmlag'
>> > lm: 465.4518
>> > prob: 0
>> > chi1: 17.6110
>> >
>> > error_4r =
>> > meth: 'lmerror_robust'
>> > lm: 76.5845
>> > prob: 0
>> > chi1: 6.6400
>> >
>> > lag_4r =
>> >
>> > meth: 'lmlag_robust'
>> > lm: 66.1547
>> > prob: 4.4409e-16
>> > chi1: 6.6400
>> >
>> > Did I do anything wrong? Any thought on this problem?
>> >
>> > thanks,
>> >
>> > qiuhua
>> >
>> > [[alternative HTML version deleted]]
>> >
>> > _______________________________________________
>> > R-sig-Geo mailing list
>> > R-sig-Geo at r-project.org
>> > https://stat.ethz.ch/mailman/listinfo/r-sig-geo
>> >
>>
>>
>
>
--
Roger Bivand
Department of Economics, Norwegian School of Economics,
Helleveien 30, N-5045 Bergen, Norway.
voice: +47 55 95 93 55; fax +47 55 95 91 00
e-mail: Roger.Bivand at nhh.no
http://orcid.org/0000-0003-2392-6140
https://scholar.google.no/citations?user=AWeghB0AAAAJ&hl=en
http://depsy.org/person/434412
More information about the R-sig-Geo
mailing list