[R-SIG-Finance] Garch question
Spencer Graves
spencer.graves at pdf.com
Sun Feb 3 21:19:12 CET 2008
The whitened residuals are assumed to be serially uncorrelated.
Therefore, sqrt(cumsum(estimated variance)) should give an estimate of
the standard deviations of the predictions.
In particular, consider the following:
library(fGarch)
fit <- garchFit(diff(log(x))
pred.dlx <- predict(fit)
pred.lx <- cumsum(pred.dlx[, 1])
pred.slx <- sqrt(cumsum(pred.dlx[, 3]^2))
pred.x <- exp(pred.lx)
ul <- exp(pred.lx + 1.96*pred.slx)
ll <- exp(pred.lx - 1.96*pred.slx)
EXAMPLE:
library(FinTS)
library(fGarch)
data(sp500)
spFit30.11 <- garchFit(sp500~arma(3,0)+garch(1,1),
data=sp500)
pred.spFit00.11 <- predict(spFit00.11)
cumPred <- cumsum(pred.spFit00.11[, 1])
cumPredS <- sqrt(cumsum(pred.spFit00.11[, 3]^2))
... see the discussion of Figure 2.15 in
"~R\library\FinTS\scripts\ch02.R", where "~R" is your local R
installation directory.
Hope this helps.
Spencer
babel at centrum.sk wrote:
> 1. Can I use garch model on price series or do I need to transform it to return, for example ret<-diff(log(x))?
> 2. If yes, then how can I predict the future values, while I am working with return?
> 3. library(fArma)
> fit1 = armaFit(~ arma(1, 0), data = x)
> predict(fit1, 10)
>
> 1.179176 1.179747 1.180312 1.180871 1.181425 1.181974 1.182517 1.183054 1.183586 1.184113
>
>
> with Arma there is no problem with prediction. But how can I use ARMA to predict a mean and GARCH for variance?
>
> fit = garchFit(~garch(1, 1), data =ret ) #if I use data=x the estimated coeficients are not significant
> predict(fit,n.ahead=10)
> meanForecast meanError standardDeviation
> 1 -0.007308328 0.5299619 0.4586886
> 2 -0.007308328 0.5299619 0.4588551
> ....................................................................................
> How can this output help me, to improve the result of ARMA forecasting? Should I add Garch standard deviation to ARMA prediction?
> Or I can even use this formula>:
>
> fit = garchFit(~arma(1,0,0)+garch(1, 1), data =ret)
>
> meanForecast meanError standardDeviation
> 1 -0.025711384 0.5292999 0.4589430
> 2 -0.006770741 0.5296301 0.4591042
>
> but what to do with this? I expected values like in pure ARMA>> 1.179176 1.179747 .... ... or can I somehow transform this return back into price time series?
>
> Sorry for my english and poor statistical knowledge, I just dont understand what to do with garch output. I read that GARCH model gives better result in forecasting than ARMA, but I dont know how to get those future values. The values, that tells you something (price values) not the return series. Anyway, many thanks.
>
> John
>
> _______________________________________________
> R-SIG-Finance at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-finance
> -- Subscriber-posting only.
> -- If you want to post, subscribe first.
>
More information about the R-SIG-Finance
mailing list