[R] aggregating data with quality control
Rui Barradas
ru|pb@rr@d@@ @end|ng |rom @@po@pt
Sat Aug 31 15:41:10 CEST 2024
Às 12:15 de 31/08/2024, Stefano Sofia escreveu:
> Dear R-list users,
>
> I deal with semi-hourly data from automatic meteorological stations.
>
> They have to pass a manual validation; suppose that status = "C" stands for correct and status = "D" for discarded.
>
> Here a simple example with "Snow height" (HS):
>
>
> mydf <- data.frame(data_POSIX=seq(as.POSIXct("2024-01-01 00:00:00", format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT-1"), as.POSIXct("2024-01-02 23:30:00", format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT-1"), by="30 min"))
>
> mydf$hs <- round(runif(96, 0, 100))
>
> mydf$status <- c(rep("C", 50), "S", rep("C", 45))
>
>
> Evaluating the daily mean indipendently from the status is very easy:
>
> aggregate(mydf$hs, by=list(format(mydf$data_POSIX, "%Y"), format(mydf$data_POSIX, "%m"), format(mydf$data_POSIX, "%d")), my.mean)
>
>
> Things become more complicated when I need to export also the status: this should be "C" when all 48 data have status equal to "C", and status "D" when at least one value has status ="D".
>
>
> I have no clue on how to do that in an efficient way.
>
> Could some of you give me some clues on how to do that?
>
>
> Thank you for your usual support
>
> Stefano Sofia
>
>
> (oo)
> --oOO--( )--OOo--------------------------------------
> Stefano Sofia PhD
> Civil Protection - Marche Region - Italy
> Meteo Section
> Snow Section
> Via del Colle Ameno 5
> 60126 Torrette di Ancona, Ancona (AN)
> Uff: +39 071 806 7743
> E-mail: stefano.sofia using regione.marche.it
> ---Oo---------oO----------------------------------------
>
> ________________________________
>
> AVVISO IMPORTANTE: Questo messaggio di posta elettronica pu� contenere informazioni confidenziali, pertanto � destinato solo a persone autorizzate alla ricezione. I messaggi di posta elettronica per i client di Regione Marche possono contenere informazioni confidenziali e con privilegi legali. Se non si � il destinatario specificato, non leggere, copiare, inoltrare o archiviare questo messaggio. Se si � ricevuto questo messaggio per errore, inoltrarlo al mittente ed eliminarlo completamente dal sistema del proprio computer. Ai sensi dell'art. 6 della DGR n. 1394/2008 si segnala che, in caso di necessit� ed urgenza, la risposta al presente messaggio di posta elettronica pu� essere visionata da persone estranee al destinatario.
> IMPORTANT NOTICE: This e-mail message is intended to be received only by persons entitled to receive the confidential information it may contain. E-mail messages to clients of Regione Marche may contain information that is confidential and legally privileged. Please do not read, copy, forward, or store this message unless you are an intended recipient of it. If you have received this message in error, please forward it to the sender and delete it completely from your computer system.
>
> [[alternative HTML version deleted]]
>
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide https://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
Hello,
The aggregate.formula method has a subset argument that you can use to
extract only the rows matching a condition. The condition below tells if
there is any "D" and aggregates based on it.
I create a variable subset_condition in order to make the code more
readable.
First data with no "D"
set.seed(2024)
mydf <- data.frame(data_POSIX = seq(as.POSIXct("2024-01-01 00:00:00",
format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT-1"),
as.POSIXct("2024-01-02 23:30:00",
format = "%Y-%m-%d %H:%M:%S", tz="Etc/GMT-1"), by="30 min"))
mydf$hs <- round(runif(96, 0, 100))
mydf$status <- c(rep("C", 50), "S", rep("C", 45))
my.mean <- function(x, na.rm = TRUE) mean(x, na.rm = na.rm)
aggregate(hs ~ format(mydf$data_POSIX, "%Y-%m-%d"), mydf, my.mean)
#> format(mydf$data_POSIX, "%Y-%m-%d") hs
#> 1 2024-01-01 52.37500
#> 2 2024-01-02 45.64583
subset_condition <- if(any(mydf$status == "D")) mydf$status == "D" else TRUE
aggregate(hs ~ format(mydf$data_POSIX, "%Y-%m-%d") + status, mydf,
my.mean, subset = subset_condition)
#> format(mydf$data_POSIX, "%Y-%m-%d") status hs
#> 1 2024-01-01 C 52.37500
#> 2 2024-01-02 C 46.48936
#> 3 2024-01-02 S 6.00000
Now data with "D"'s.
my.mean <- function(x, na.rm = TRUE) mean(x, na.rm = na.rm)
status_with_D <- sample(c('C', 'D'), 45, TRUE, c(.9, .1))
mydf$status <- c(rep("C", 50), "S", status_with_D)
subset_condition <- if(any(mydf$status == "D")) mydf$status == "D" else TRUE
aggregate(hs ~ format(data_POSIX, "%Y-%m-%d") + status, mydf, my.mean,
subset = subset_condition)
#> format(data_POSIX, "%Y-%m-%d") status hs
#> 1 2024-01-02 D 51.2
# the formats in the OP but extracted from the date/time and used in the
formula that follows.
year <- format(mydf$data_POSIX, "%Y")
month <- format(mydf$data_POSIX, "%m")
day <- format(mydf$data_POSIX, "%d")
aggregate(hs ~ year + month + day, mydf, my.mean)
#> year month day hs
#> 1 2024 01 01 52.37500
#> 2 2024 01 02 45.64583
aggregate(hs ~ year + month + day + status, mydf, my.mean, subset =
subset_condition)
#> year month day status hs
#> 1 2024 01 02 D 51.2
Hope this helps,
Rui Barradas
--
Este e-mail foi analisado pelo software antivírus AVG para verificar a presença de vírus.
www.avg.com
More information about the R-help
mailing list