[R] Clustering of datasets
Subhamitra Patra
@ubh@m|tr@@p@tr@ @end|ng |rom gm@||@com
Mon Sep 5 14:04:39 CEST 2022
Dear all,
I also tried the k-mean method in some other parts of my data, but still
not getting the perfect result as expected.
Herewith I attached the related code as below. Please suggest to me where I
am lacking in my below code.
DMs<-read.table(text="Country Data
Israel 0.087320199
Bahrein 0.37991129
HongKong 0.037552721
Japan 0.235350891
Kuwait 0.286427554
oman 0.400096249
Qatar 0.270693298
SouthKorea 0.007407618
SaudiArabia 0.187578553
Singapore 0.008528448
Taiwan 0.027371676
UAE 0.276795224
Austria 0.015132794
Belgium 0.008513907
Cyprus -0.000938601
CzechRepublic 0.017460065
Denmark 0.029490066
Estonia 0.114144041
Finland 0.016245116
France 0.007217465
Germany 0.00371948
Greece -0.008527501
Iceland 0.748097785
Ireland 0.023309721
Latvia 0.178227267
Lithuania 0.100033752
Luxemborg 0.044546393
Malta 0.128679817
Netherland 0.010188604
Norway 0.003437861
Poland 0.006426383
Portugal 0.00753412
Slovakia 0.505992775
Slovenia 0.162475815
Spain 0.00267973
Sweden 0.009967609
Switzerland 0.020557185
UK 0.009340789
Hungary 0.005389885
Canada -0.000531982
Chile 0.007080471
USA 0.013516878
Bermuda -0.338491435
Australia 0.113039242
Newzealand 0.154508239",
header = TRUE,stringsAsFactors=FALSE)
library(cluster)
k1<-kmeans(DMs[,2],centers=2,nstart=25)
plot(DMs[,2],col=k1$cluster,pch=19,xlim=c(1,45), ylim=c(-0.001,2.5))
text(1:45+0.5,DMs[,2]+0.05,DMs[,1],col=k1$cluster)
legend(2,1,c("cluster 1: Highly efficient DMs","cluster 2: Less efficient
DMs"),
col=1:5,pch=19)
[image: Mailtrack]
<https://mailtrack.io?utm_source=gmail&utm_medium=signature&utm_campaign=signaturevirality11&>
Sender
notified by
Mailtrack
<https://mailtrack.io?utm_source=gmail&utm_medium=signature&utm_campaign=signaturevirality11&>
09/05/22,
05:34:10 PM
On Mon, Sep 5, 2022 at 5:01 PM Subhamitra Patra <subhamitra.patra using gmail.com>
wrote:
> Dear all,
>
> I am about to cluster my datasets by using K-mean clustering techniques in
> R, but getting some type of scattered results. Herewith I pasted my code
> below. Please suggest to me where I am lacking in my code. I was pasting my
> data before applying the K-mean method as follows.
>
> DMs<-read.table(text="Country DATA
> IS -0.0092
> BA -0.0235
> HK -0.0239
> JA -0.0333
> KU -0.0022
> OM -0.0963
> QA -0.0706
> SK -0.0322
> SA -0.1233
> SI -0.0141
> TA -0.0142
> UAE -0.0656
> AUS -0.0230
> BEL -0.0006
> CYP -0.0085
> CR -0.0398
> DEN -0.0423
> EST -0.0604
> FIN -0.0227
> FRA -0.0085
> GER -0.0272
> GrE -0.3519
> ICE -0.0210
> IRE -0.0057
> LAT -0.0595
> LITH -0.0451
> LUXE -0.0023
> MAL -0.0351
> NETH -0.0048
> NOR -0.0495
> POL -0.0081
> PORT -0.0044
> SLOVA -0.1210
> SLOVE -0.0031
> SPA -0.0213
> SWE -0.0106
> SWIT -0.0152
> UK -0.0030
> HUNG -0.0086
> CAN -0.0144
> CHIL -0.0078
> USA -0.0042
> BERM -0.0035
> AUST -0.0211
> NEWZ -0.0538" ,
> header = TRUE,stringsAsFactors=FALSE)
> library(cluster)
> k1<-kmeans(DMs[,2],centers=2,nstart=25)
> plot(DMs[,2],col=k1$cluster,pch=19,xlim=c(1,46), ylim=c(-0.12,0))
> text(1:46,DMs[,2],DMs[,1],col=k1$cluster)
> legend(10,1,c("cluster 1: Highly Integrated","cluster 2: Less Integrated"),
> col=1:2,pch=19)
>
>
> --
> *Best Regards,*
> *Subhamitra Patra*
> *Phd. Research Scholar*
> *Department of Humanities and Social Sciences*
> *Indian Institute of Technology, Kharagpur*
> *INDIA*
>
> [image: Mailtrack]
> <https://mailtrack.io?utm_source=gmail&utm_medium=signature&utm_campaign=signaturevirality11&> Sender
> notified by
> Mailtrack
> <https://mailtrack.io?utm_source=gmail&utm_medium=signature&utm_campaign=signaturevirality11&> 09/05/22,
> 04:55:22 PM
>
--
*Best Regards,*
*Subhamitra Patra*
*Phd. Research Scholar*
*Department of Humanities and Social Sciences*
*Indian Institute of Technology, Kharagpur*
*INDIA*
[[alternative HTML version deleted]]
More information about the R-help
mailing list