# [R] row combining 2972 files

Yuan Chun Ding ycd|ng @end|ng |rom coh@org
Wed Mar 18 23:29:24 CET 2020

```Hi Denes,

thank you very much for your mesasge!!
I would like to learn from you.

We generated preliminary data for a new project, so performing explorative analysis. since only sample size is relative small, I probably will both Cox regression and firth's Cox regresion.
there are 2972 markers; for each marker, there are different ways to convert multi-allele genotype data to bi-allele genotype data based on allele distribution pattern in each marker.

for each converted bi-allele variable, I ran Cox model in two different ways ( categorical variable, and numeric  variable)

since distribution patterns are different for different markers, I tested them and added some restrictions using if else condition. I  have wide computer screen, one line of code is long.

how do you arrange the data analysis process if you perform those analysis?

Thank you,

Ding

#dat file includes multi-allele genotype data for 2972 markers in row and 187 individuals in columns
for (i in 1:nrow(dat)){
tem <- as.data.frame(t(dat[i,,drop=F])) #subset data for one of 2972 markers
names(tem)<-"V1"
tem <- tem[which(tem\$V1!=""),,drop=F]
tem1 <-separate(tem, col=V1, into=c("m1","m2"), convert = T)
row.names(tem1) <-substr(row.names(tem1), 17, nchar(row.names(tem1))-7)
tem2 <-tem1
tem3 <-gather(tem2, marker, VNTR_repeats, m1:m2)
tem4 <-as.data.frame(t(t(table(tem3\$VNTR_repeats))))[,c(1,3)]
tem4\$Var1 <-as.numeric(as.character(tem4\$Var1))
tem4 <-tem4[order(tem4\$Var1),]
tem5 <-tem4[c(TRUE,diff(tem4\$Freq)!=0), ]
if(length(tem5\$Freq)<=2) {tem6 <-tem4} else
{tem6 <-tem5[which.maxs (tem5\$Freq, include.endpoints=TRUE),]}

if((tem6\$Var1[1]==tem5\$Var1[1]) & length(tem6\$Var1)>1) tem6 <-tem6[-1,]

c <-length(tem6\$Var1) # for each marker, c different ways to convert multi-allele data into bi-allele data

#to convert multi-allele data into bi-allele data for one marker
for ( m in 1:c) {
if(tem6\$Var1[m]==tem5\$Var1[1]) { tem7 <-tem2%>%
mutate(m3 = case_when(m1>tem6\$Var1[m]~"L", m1<=tem6\$Var1[m] ~"S"),
m4 = case_when(m2>tem6\$Var1[m]~"L", m2<=tem6\$Var1[m] ~"S"))} else
{tem7 <-tem2%>% mutate(m3 = case_when(m1>=tem6\$Var1[m]~"L", m1<tem6\$Var1[m] ~"S"),
m4 = case_when(m2>=tem6\$Var1[m]~"L", m2<tem6\$Var1[m] ~"S"))}
cut_off <-paste(strsplit(as.character(row.names(dat)[i]),'_',fixed=TRUE)[[1]][1], "cutoff_repeat", tem6\$Var1[m], sep="_")
tem7[[cut_off]] <-paste(tem7\$m3, tem7\$m4, sep="_")
tem7[[cut_off]] <-ifelse(tem7[[cut_off]] =="L_S", "S_L", tem7[[cut_off]])
tem2 <-tem7
}

#to merge phenotypic data and bi-allele data for Cox regression analysis
# treat bi-allele data as categorical data (factor)
tem8 <-tem7[,-c(1:4),drop=F]
row.names(tem8) <-row.names(tem1)
tem9 <-merge(pheno, tem8, by.x="id", by.y=0)
tem10 <- matrix(NA, nrow=c, ncol=11)

#Cox models for one marker ( c different categorical variables)
for (n in 1:c) {
form=as.formula(paste("Surv(age, status) ~  ", factor(colnames(tem9)[n + 8])))
res <- coxph(formula=form, data=tem9)
s <- summary(res)
if (length(table(tem9[[colnames(tem9)[n + 8]]])) ==3) tem10[n,] <- c(row.names(s[[8]])[1], s[[4]], s[[7]][1,5], s[[8]][1,1], s[[8]][1,3], s[[8]][1,4], row.names(s[[8]])[2], s[[7]][2,5], s[[8]][2,1], s[[8]][2,3], s[[8]][2,4])
if (length(table(tem9[[colnames(tem9)[n + 8]]])) ==2) tem10[n,] <- c(row.names(s[[8]])[1], s[[4]], s[[7]][1,5], s[[8]][1,1], s[[8]][1,3], s[[8]][1,4], NA, NA, NA, NA, NA)
}

#tem10 contains Cox regression results
tem10 <-as.data.frame(tem10)
names(tem10)[1:11]<-c("genotype1", "N_sample","Pr1","HR1","HR_lower1" ,"HR_upper1", "genotype2", "Pr2","HR2","HR_lower2" ,"HR_upper2")

# for the same marker, convert each categorical variable as numeric variables (0, 1, 2 copies of long alleles)
if (ncol(tem8)==1) tem8\$dup <-tem8[,1]
tem11 <- as.data.frame(do.call(cbind, lapply(tem8[,1:ncol(tem8)], function(i) mgsub(pattern = c("S_S", "S_L","L_L"), replacement = c("0", "1","2"), i))))
tem12 <- as.data.frame(do.call(cbind, lapply(tem11[,1:ncol(tem11)], function(i) as.numeric(as.character(i)))))
row.names(tem12)<-row.names(tem8)
colnames(tem12) <-paste(colnames(tem12),"numeric",sep="_")
tem13 <-merge(pheno, tem12, by.x="id", by.y=0)

tem14 <- matrix(NA, nrow=c, ncol=6)

#Cox models for numberic variables
for (p in 1:c) {
form=as.formula(paste("Surv(age, status) ~  ", colnames(tem13)[p + 8]))
res14 <- coxph(formula=form, data=tem13)
s14 <- summary(res14)
# Cox model results in tem14
tem14[p,] <- c(row.names(s14[[8]])[1], s14[[4]], s14[[7]][1,5], s14[[8]][1,1], s14[[8]][1,3], s14[[8]][1,4])
}
tem14 <-as.data.frame(tem14)
names(tem14)[1:6]<-c("genotype", "N_sample","Pr","HR","HR_lower" ,"HR_upper")

#put Cox model input data files (tem8 and tem12) and Cox model results (tem10 and tem14) into a list object
#and assign marker id as file name for the list object
assign(row.names(dat)[i], list(tem8,tem10, tem12, tem14))
}

list2972 <-ls(pat="VNTR.*.")

# to combine cox model input files and results
dat.cat <- do.call(rbind, lapply(list2972, function(x)get(x)[1]))
res.cat <- do.call(rbind, lapply(list2972, function(x)get(x)[[2]]))
dat.num <-  do.call(rbind, lapply(list2972, function(x)get(x)[3]))
res.num <- do.call(rbind, lapply(list2972, function(x)get(x)[4]))
________________________________________
From: Dénes Tóth [toth.denes using kogentum.hu]
Sent: Wednesday, March 18, 2020 2:35 PM
To: Bert Gunter; Yuan Chun Ding
Cc: r-help mailing list
Subject: Re: [R] row combining 2972 files

On 3/18/20 9:02 PM, Bert Gunter wrote:
> Untested in the absence of example data, but I think
>
> combined <- do.call(rbind, lapply(ls2972, function(x)get(x)[[2]]))

Or if you have largish data, use rbindlist() from the data.table package:

combined <- data.table::rbindlist(
lapply(ls2972, function(x) get(x)[[2]])
)

However, it seems you are on the wrong track when you create 2972 lists
in your workspace. (Note: there are no "list files" objects in R. Lists
are objects, not files.) You should have one list of 2972 lists each
having 4 data.frames.

E.g.:

x <- list(
list(
data.frame(),
data.frame(x = 1),
data.frame(),
data.frame()
),
list(
data.frame(),
data.frame(x = 2),
data.frame(),
data.frame()
),
list(
data.frame(),
data.frame(x = 3),
data.frame(),
data.frame()
)
)
keep <- lapply(x, "[[", 2L)
combined <- data.table::rbindlist(keep)

HTH,
Denes

>
> should do it.
>
>
> Bert Gunter
>
> "The trouble with having an open mind is that people keep coming along and
> sticking things into it."
> -- Opus (aka Berkeley Breathed in his "Bloom County" comic strip )
>
>
> On Wed, Mar 18, 2020 at 12:16 PM Yuan Chun Ding <ycding using coh.org> wrote:
>
>> Hi R users,
>>
>> I generated 2972 list files in R, each list includes four data frame files
>> , file names for those list file are VNTR13576, VNTR14689, etc.  the second
>> data frame in each list has the same 11 column names, but different number
>> of rows.
>>
>> I can combine two dataframes by
>> list2972 <-ls(pat="VNTR.*.")
>> test <-rbind(get(list2972[16])[[2]],get(list2972[166])[[2]] )
>>
>> I tried to combine all 2972 data frames from those 2972 list files using
>> do.call or lapply function, but not successful.
>>
>> Can you help me?
>>
>> Thank you very much!
>>
>> Ding
>>
>> ----------------------------------------------------------------------
>> ------------------------------------------------------------
>> -SECURITY/CONFIDENTIALITY WARNING-
>>
>> This message and any attachments are intended solely for the individual or
>> entity to which they are addressed. This communication may contain
>> information that is privileged, confidential, or exempt from disclosure
>> under applicable law (e.g., personal health information, research data,
>> financial information). Because this e-mail has been sent without
>> encryption, individuals other than the intended recipient may be able to
>> view the information, forward it to others or tamper with the information
>> without the knowledge or consent of the sender. If you are not the intended
>> recipient, or the employee or person responsible for delivering the message
>> to the intended recipient, any dissemination, distribution or copying of
>> the communication is strictly prohibited. If you received the communication
>> in error, please notify the sender immediately by replying to this message
>> and deleting the message and any accompanying files from your system. If,
>> due to the security risks, you do not wish to receive further
>> communications via e-mail, please reply to this message and inform the
>> sender that you do not wish to receive further e-mail from the sender.
>> (LCP301)
>>
>> ______________________________________________
>> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
>> https://urldefense.com/v3/__https://stat.ethz.ch/mailman/listinfo/r-help__;!!Fou38LsQmgU!81csfRTX5GGrC7eTO0C1mv_eFQ7glT3yULsK-xiJfcvfjvY8d49Iiff6h_xX\$
>> https://urldefense.com/v3/__http://www.R-project.org/posting-guide.html__;!!Fou38LsQmgU!81csfRTX5GGrC7eTO0C1mv_eFQ7glT3yULsK-xiJfcvfjvY8d49IiQj8zA2P\$
>> and provide commented, minimal, self-contained, reproducible code.
>>
>
>       [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://urldefense.com/v3/__https://stat.ethz.ch/mailman/listinfo/r-help__;!!Fou38LsQmgU!81csfRTX5GGrC7eTO0C1mv_eFQ7glT3yULsK-xiJfcvfjvY8d49Iiff6h_xX\$