[R] Rmpfr correlation
Rui Barradas
ru|pb@rr@d@@ @end|ng |rom @@po@pt
Sun Jul 12 12:59:11 CEST 2020
Hello,
Why not write a function COR? Not one as general purpose as stats::cor
but a simple one, to compute the sample Pearson correlation only.
library(Rmpfr)
COR <- function(x, y){
precBits <- getPrec(x)[1]
n <- mpfr(length(x), precBits = precBits)
x.bar <- mean(x)
y.bar <- mean(y)
numer <- sum(x*y) - n*x.bar*y.bar
denom <- sqrt(sum(x*x) - n*x.bar*x.bar) * sqrt(sum(y*y) - n*y.bar*y.bar)
numer/denom
}
set.seed(2020)
KA <- mpfr(10^-4.6, 128)
x <- rnorm(100)*KA
y <- rnorm(100)*x
cor(as.numeric(x), as.numeric(y)) # -0.1874986
#[1] -0.1874986
COR(x, y)
#1 'mpfr' number of precision 128 bits
#[1] -0.1874985950531874160800643775644747505073
Hope this helps,
Rui Barradas
Às 10:42 de 12/07/20, tring using gvdnet.dk escreveu:
> Dear friends - I'm calculating buffer capacities by different methods and
> need very high precision and package Rmpfr is working beautifully. However,
> I have not been able to find out how to keep precision when finding
> correlations.
>
> library(Rmpfr)
>
> KA <- mpfr(10^-4.6, 128)
>
> x <- rnorm(100)*KA
>
> y <- rnorm(100)*x
>
> cor(x,y) # "x" must be numeric
>
> cor(as.numeric(x),as.numeric(y))# 0.2918954
>
>
>
> In my concrete application I get cor = 1 for
> cor(as.numeric(dff$BB),as.numeric(BBVS)) even though I have
>
>
>
> str(summary((dff$BB)-(BBVS)))
> Class 'summaryMpfr' [package "Rmpfr"] of length 6 and precision 128
> 4.61351010833e-8 7.33418976521e-7 1.31009046563e-5 3.76407022709e-5
> 5.72386764888e-5 ...
>
>
>
> I am on windows 10
>
> R version 3.6.1
>
> Best wishes
> Troels Ring,
> Aalborg, Denmark
>
>
>
>
>
>
> This email has been scanned by BullGuard antivirus protection.
> For more info visit www.bullguard.com
> <http://www.bullguard.com/tracking.aspx?affiliate=bullguard&buyaffiliate=smt
> p&url=/>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help using r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
More information about the R-help
mailing list