[R] Something is wrong; all the MAE metric values are missing

Neha gupta neh@@bo|ogn@90 @end|ng |rom gm@||@com
Wed Dec 25 17:50:14 CET 2019


Hi

I am using Simulated annealing to tune the parameters of xgbtree for
regression dataset. When I run the code to tune the parameters of SVM and
RF, it works but when I run the same code for xgbTree, it gives stops and
give error:
Something is wrong; all the MAE metric values are missing:
      RMSE        Rsquared        MAE
 Min.   : NA   Min.   : NA   Min.   : NA
 1st Qu.: NA   1st Qu.: NA   1st Qu.: NA
 Median : NA   Median : NA   Median : NA
 Mean   :NaN   Mean   :NaN   Mean   :NaN
 3rd Qu.: NA   3rd Qu.: NA   3rd Qu.: NA
 Max.   : NA   Max.   : NA   Max.   : NA
 NA's   :1     NA's   :1     NA's   :1

The code is given below:

library(xgboost)
d=readARFF("ant.arff")
dput( head( d, 50 ) )
d-> structure(list(version = c(1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7,
                               1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7,
1.7, 1.7, 1.7, 1.7,
                               1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7,
1.7, 1.7, 1.7, 1.7,
                               1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7, 1.7,
1.7, 1.7, 1.7, 1.7,
                               1.7, 1.7, 1.7, 1.7), wmc = c(3, 5, 1, 8, 9,
3, 20, 13, 9, 7,
                                                            9, 3, 1, 9, 19,
10, 3, 20, 6, 3, 5, 1, 11, 3, 3, 16, 4, 15, 11,
                                                            2, 15, 14, 27,
5, 3, 4, 6, 55, 3, 8, 11, 10, 1, 3, 9, 7, 9, 63,
                                                            6, 2), dit =
c(1, 2, 2, 1, 3, 2, 1, 1, 1, 5, 6, 2, 1, 1, 4, 4,

 2, 1, 1, 4, 2, 1, 2, 4, 2, 3, 4, 1, 3, 3, 3, 4, 3, 4, 1, 5, 1,

 3, 2, 1, 2, 1, 3, 2, 1, 1, 1, 1, 3, 1), noc = c(0, 0, 0, 9, 0,

                                               5, 0, 0, 0, 0, 0, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

                                               8, 0, 0, 0, 0, 3, 0, 0, 0,
0, 0, 8, 0, 0, 0, 0, 0, 1, 0, 0, 1,

                                               2, 2, 0), cbo = c(10, 4, 1,
13, 5, 7, 4, 7, 5, 9, 5, 19, 10,

                                                                 3, 7, 13,
2, 7, 8, 5, 7, 1, 7, 5, 5, 15, 12, 11, 3, 1, 9, 11,

                                                                 8, 8, 2,
5, 2, 20, 4, 4, 1, 10, 1, 12, 32, 24, 4, 61, 20, 6),
                   rfc = c(18, 13, 3, 20, 26, 4, 40, 28, 19, 25, 17, 10, 1,
                           12, 40, 26, 5, 79, 6, 11, 14, 1, 26, 15, 7, 65,
5, 65, 24,
                           3, 41, 29, 101, 23, 3, 19, 11, 106, 19, 22, 23,
29, 2, 22,
                           36, 8, 19, 144, 13, 2), lcom = c(3, 0, 0, 12,
16, 1, 130,
                                                            20, 8, 0, 26,
3, 0, 20, 129, 0, 0, 136, 15, 1, 6, 0, 0, 3,
                                                            1, 76, 0, 75,
17, 1, 0, 85, 157, 4, 3, 6, 3, 1313, 3, 0,
                                                            39, 43, 0, 3,
36, 3, 30, 1603, 7, 1), ca = c(1, 1, 0, 9,

                             0, 6, 0, 2, 4, 6, 0, 14, 8, 1, 0, 7, 1, 5, 7,
1, 0, 0, 5,

                             0, 1, 0, 8, 0, 0, 1, 0, 3, 5, 4, 2, 0, 1, 8,
0, 0, 1, 7,

                             0, 2, 32, 24, 1, 51, 17, 6), ce = c(9, 4, 1,
4, 5, 1, 4,

                                                                 5, 1, 3,
5, 5, 2, 2, 7, 7, 1, 5, 1, 4, 7, 1, 2, 5, 4, 15,

                                                                 4, 11, 3,
0, 9, 8, 3, 8, 0, 5, 1, 12, 4, 4, 0, 3, 1, 10,

                                                                 0, 0, 3,
10, 3, 0), npm = c(1, 4, 1, 8, 7, 2, 18, 12, 9,


                 7, 6, 3, 1, 8, 16, 9, 3, 10, 6, 1, 4, 1, 11, 2, 3, 13, 3,


                 11, 10, 2, 15, 11, 15, 5, 3, 4, 4, 9, 2, 6, 10, 8, 1, 2,


                 7, 7, 7, 31, 3, 2), loc = c(106, 76, 7, 101, 185, 16, 345,


                                             183, 119, 255, 71, 38, 1, 54,
252, 110, 34, 835, 6, 41, 70,


                                             1, 181, 51, 29, 483, 18, 443,
309, 7, 204, 108, 1286, 249,


                                             4, 57, 53, 1133, 136, 169,
136, 91, 4, 72, 281, 43, 130,


                                             2303, 56, 2), moa = c(0, 1, 0,
1, 0, 0, 1, 2, 0, 0, 0, 0,


                                                                   0, 3, 0,
1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,


                                                                   1, 1, 0,
0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0),
                   ic = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 1, 1,
                          0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1,
2, 0, 2,
                          0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0), cbm =
c(0, 0,

 0, 0, 0, 0, 0, 0, 0, 5, 4, 0, 0, 0, 3, 1, 2, 0, 0, 2, 0,

 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 0, 7, 2, 0, 4, 0, 0, 0, 0,

 1, 0, 0, 0, 0, 0, 0, 0, 4, 0), max_cc = c(1, 1, 0, 1, 2,

                                           1, 3, 7, 3, 9, 3, 1, 1, 1, 6, 3,
1, 10, 1, 3, 4, 1, 1, 2,

                                           1, 9, 1, 5, 11, 1, 2, 4, 4, 1,
1, 2, 1, 10, 2, 7, 1, 3, 0,

                                           1, 11, 1, 4, 35, 1, 1), bug =
c(0, 0, 0, 0, 1, 0, 1, 0, 0,


 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,


 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,


 3, 0, 0)), row.names = c(NA, 50L), class = "data.frame")

index <- createDataPartition(log10(d$bug), p = .70,list = FALSE)
tr <- d[index, ]
ts <- d[-index, ]

index_2 <- createFolds(tr$bug, returnTrain = TRUE, list = TRUE)
ctrl <- trainControl(method = "repeatedcv", index = index_2)

obj <- function(param, maximize = FALSE) {
  mod <- train(bug ~ ., data = tr,
               method = "xgbTree",
               preProc = c("center", "scale", "zv"),
               metric = "MAE",
               trControl = ctrl,

                tuneGrid = data.frame(nrounds = (param[1]), max_depth =
(param[2]),
                                 eta=(param[3]), gamma=(param[4]),
                                 colsample_bytree= (param[5]),
min_child_weight=(param[6]),
                                 subsample=(param[7])))

                if(maximize)
    -getTrainPerf(mod)[, "TrainMAE"] else
      getTrainPerf(mod)[, "TrainMAE"]
}
num_mods <- 50

## Simulated annealing from base R
set.seed(30218)
tic()
san_res <- optim(par = c(20, 1, 0.1, 0, 0.1, 1, 0.1), fn = obj, method =
"SANN",
                 control = list(maxit = num_mods))
san_res

	[[alternative HTML version deleted]]



More information about the R-help mailing list