[R] Fastest way to calculate quantile in large data.table
Camilo Mora
cmora at Dal.Ca
Thu Feb 5 20:48:34 CET 2015
In total I found 8 different way to calculate quantile in very a large data.table. I share below their performances for future reference. Tests 1, 7 and 8 were the fastest I found.
Best,
Camilo
library(data.table)
v <- data.table(x=runif(10000),x2 = runif(10000), x3=runif(10000),x4=runif(10000))
#fastest
Sys.time()->StartTEST1
t(v[, apply(v,1,quantile,probs =c(.1,.9,.5),na.rm=TRUE)] )
Sys.time()->EndTEST1
Sys.time()->StartTEST2
v[, quantile(.SD,probs =c(.1,.9,.5)), by = 1:nrow(v)]
Sys.time()->EndTEST2
Sys.time()->StartTEST3
v[, c("L","H","M"):=quantile(.SD,probs =c(.1,.9,.5)), by = 1:nrow(v)]
Sys.time()->EndTEST3
v
v[, c("L","H","M"):=NULL]
v[,Names:=rownames(v)]
setkey(v,Names)
Sys.time()->StartTEST4
v[, c("L","H","M"):=quantile(.SD,probs =c(.1,.9,.5)), by = Names]
Sys.time()->EndTEST4
v
v[, c("L","H","M"):=NULL]
Sys.time()->StartTEST5
v[, as.list(quantile(.SD,c(.1,.90,.5),na.rm=TRUE)), by=Names]
Sys.time()->EndTEST5
Sys.time()->StartTEST6
v[, as.list(quantile(.SD,c(.1,.90,.5),na.rm=TRUE)), by=Names,.SDcols=1:4]
Sys.time()->EndTEST6
Sys.time()->StartTEST7
v[, as.list(quantile(c(x , x2, x3, x4 ),c(.1,.90,.5),na.rm=TRUE)), by=Names]
Sys.time()->EndTEST7
# melting the database and doing quantily by summary. This is the second fastest, which is ironic given that the database has to be melted first
library(reshape2)
Sys.time()->StartTEST8
vs<-melt(v)
vs[, as.list(quantile(value,c(.1,.90,.5),na.rm=TRUE)), by=Names]
Sys.time()->EndTEST8
EndTEST1-StartTEST1
EndTEST2-StartTEST2
EndTEST3-StartTEST3
EndTEST4-StartTEST4
EndTEST5-StartTEST5
EndTEST6-StartTEST6
EndTEST7-StartTEST7
EndTEST8-StartTEST8
More information about the R-help
mailing list