[R] Fastest way to calculate quantile in large data.table
Camilo Mora
cmora at Dal.Ca
Thu Feb 5 06:59:57 CET 2015
Hi everyone,
I have a data.table with 200 columns and few million rows and am trying to calculate the .1 and .9 quantiles for each row across all 200 columns.
I have found different ways to do this, all with different performances. The examples I used are below. I wonder whether there is a faster way to do this?
Thanks and best,
Camilo
library(data.table)
v <- data.table(x=runif(10000),x2 = runif(10000), x3=runif(10000),x4=runif(10000))
v[,Names:=rownames(v)]
#test 1 using .SD but not .SDcols
Sys.time()->StartTEST1
v[, as.list(quantile(.SD,c(.1,.90),na.rm=TRUE)), by=Names]
Sys.time()->EndTEST1
#test 2 using .SD and .SDcols
Sys.time()->StartTEST2
v[, as.list(quantile(.SD,c(.1,.90),na.rm=TRUE)), by=Names,.SDcols=1:4]
Sys.time()->EndTEST2
#test 3 using colnames directly. This is the fastest I found
Sys.time()->StartTEST3
v[, as.list(quantile(c(x , x2, x3, x4 ),c(.1,.90),na.rm=TRUE)), by=Names]
Sys.time()->EndTEST3
# melting the database and doing quantile by summary. This is the second fastest, which is ironic given that the database has to be melted first
library(reshape2)
Sys.time()->StartTEST4
vs<-melt(v)
vs[, as.list(quantile(value,c(.1,.90),na.rm=TRUE)), by=Names]
Sys.time()->EndTEST4
EndTEST1-StartTEST1
EndTEST2-StartTEST2
EndTEST3-StartTEST3
EndTEST4-StartTEST4
[[alternative HTML version deleted]]
More information about the R-help
mailing list