[R] nested for loops too slow
Bert Gunter
gunter.berton at gene.com
Sun Apr 12 23:32:09 CEST 2015
Well, sort of...
aggregate() is basically a wrapper for lapply(), which ultimately must loop
over the function call at the R interpreter level, as opposed to vectorized
functions that loop at the C level and hence can be orders of magnitude
faster. As a result, there is often little difference in efficiency between
explicit and *smart* (in the sense that Pat Burns has already pointed out
of not growing structures at each iteration,among other things) for()
looping and apply-type calls. For some of us, the chief advantage of the
*apply idioms is that the code is more readable and maintainable, with R
handling fussy details of loop indexing, for example.lapply() is also more
in keeping with the functional programming paradigm.
Others
find both these "virtues" to be annoyances,
however, and prefer explicit *smart* looping. Chaque un á
son goû
t
.
None of which necessarily denies the wisdom of the approach you've
suggested, however. It may indeed be considerably faster,
but timing will have to tell. I am just trying to correct
(again)
the
widely held misperception
that yo
u
seem to
express
.
Cheers,
Bert
Bert Gunter
Genentech Nonclinical Biostatistics
(650) 467-7374
"Data is not information. Information is not knowledge. And knowledge is
certainly not wisdom."
Clifford Stoll
On Sun, Apr 12, 2015 at 1:48 PM, Thierry Onkelinx <thierry.onkelinx at inbo.be>
wrote:
> You don't need loops at all.
>
> grw <- aggregate(gw ~ ts + ISEG + iter, data = dat, FUN = sum)
> GRW <- aggregate(gw ~ ts + ISEG, data = grw, FUN = function(x){max(x) -
> min(x)})
> DC <- aggregate(div ~ ts + ISEG, data = subset(dat, IRCH == 1), FUN =
> function(x){max(x) - min(x)})
> iter <- aggregate(iter ~ ts + ISEG, data = subset(dat, IRCH == 1), FUN
> = max)
> tmp <- merge(DC, iter)
> merge(tmp, GRW)
>
> another option is to use the plyr package
>
> library(plyr)
> merge(
> ddply(
> subset(dat, IRCH == 1),
> c("ts", "ISEG"),
> summarize,
> divChng = max(div) - min(div),
> max.iter = max(iter)
> ),
> ddply(
> dat,
> c("ts", "ISEG"),
> summarize,
> gwChng = diff(range(ave(gw, iter, FUN = sum)))
> )
> )
>
> Best regards,
>
> ir. Thierry Onkelinx
> Instituut voor natuur- en bosonderzoek / Research Institute for Nature and
> Forest
> team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
> Kliniekstraat 25
> 1070 Anderlecht
> Belgium
>
> To call in the statistician after the experiment is done may be no more
> than asking him to perform a post-mortem examination: he may be able to say
> what the experiment died of. ~ Sir Ronald Aylmer Fisher
> The plural of anecdote is not data. ~ Roger Brinner
> The combination of some data and an aching desire for an answer does not
> ensure that a reasonable answer can be extracted from a given body of data.
> ~ John Tukey
>
> 2015-04-12 15:47 GMT+02:00 Morway, Eric <emorway at usgs.gov>:
>
> > The small example below works lighting-fast; however, when I run the same
> > script on my real problem, a 1Gb text file, the for loops have been
> running
> > for over 24 hrs and I have no idea if the processing is 10% done or 90%
> > done. I have not been able to figure out a betteR way to code up the
> > material within the for loops at the end of the example below. The
> > contents of divChng, the final product, are exactly what I'm after, but I
> > need help formulating more efficient R script, I've got two more 1Gb
> files
> > to process after the current one finishes, whenever that is...
> >
> > I appreciate any insights/solutions, Eric
> >
> > dat <- read.table(textConnection("ISEG IRCH div gw
> > 1 1 265 229
> > 1 2 260 298
> > 1 3 234 196
> > 54 1 432 485
> > 54 39 467 485
> > 54 40 468 468
> > 54 41 460 381
> > 54 42 489 502
> > 1 1 265 317
> > 1 2 276 225
> > 1 3 217 164
> > 54 1 430 489
> > 54 39 456 495
> > 54 40 507 607
> > 54 41 483 424
> > 54 42 457 404
> > 1 1 265 278
> > 1 2 287 370
> > 1 3 224 274
> > 54 1 412 585
> > 54 39 473 532
> > 54 40 502 595
> > 54 41 497 441
> > 54 42 447 467
> > 1 1 230 258
> > 1 2 251 152
> > 1 3 199 179
> > 54 1 412 415
> > 54 39 439 538
> > 54 40 474 486
> > 54 41 477 484
> > 54 42 413 346
> > 1 1 230 171
> > 1 2 262 171
> > 1 3 217 263
> > 54 1 432 485
> > 54 39 455 482
> > 54 40 493 419
> > 54 41 489 536
> > 54 42 431 504
> > 1 1 1002 1090
> > 1 2 1222 1178
> > 1 3 1198 1177
> > 54 1 1432 1485
> > 54 39 1876 1975
> > 54 40 1565 1646
> > 54 41 1455 1451
> > 54 42 1427 1524
> > 1 1 1002 968
> > 1 2 1246 1306
> > 1 3 1153 1158
> > 54 1 1532 1585
> > 54 39 1790 1889
> > 54 40 1490 1461
> > 54 41 1518 1536
> > 54 42 1486 1585
> > 1 1 1002 1081
> > 1 2 1229 1262
> > 1 3 1142 1241
> > 54 1 1632 1659
> > 54 39 1797 1730
> > 54 40 1517 1466
> > 54 41 1527 1589
> > 54 42 1514 1612"),header=TRUE)
> >
> > dat$seq <- ifelse(dat$ISEG==1 & dat$IRCH==1, 1, 0)
> > tmp <- diff(dat[dat$seq==1,]$div)!=0
> > dat$idx <- 0
> > dat[dat$seq==1,][c(TRUE,tmp),]$idx <- 1
> > dat$ts <- cumsum(dat$idx)
> > dat$iter <- ave(dat$seq, dat$ts,FUN=cumsum)
> > dat$ct <- seq(1:length(dat[,1]))
> >
> > timeStep <- unique(dat$ts)
> > SEG <- unique(dat$ISEG)
> > divChng <- data.frame(ts=NA, ISEG=NA, divChng=NA, gwChng=NA, iter=NA)
> >
> > #Can the following be rescripted for better harnessing R's processing
> > power?
> >
> > for (i in 1:length(timeStep)){
> > for (j in 1:length(SEG)){
> > datTS <- subset(dat,ts==timeStep[i] & ISEG==SEG[j] & IRCH==1)
> > datGW <- subset(dat,ts==timeStep[i] & ISEG==SEG[j])
> > grw <- aggregate(gw ~ iter, datGW, sum)
> >
> > DC <- max(datTS$div)-min(datTS$div)
> > GRW <- max(grw$gw) - min(grw$gw)
> > divChng <- rbind(divChng,c(datTS$ts[1], SEG[j], DC, GRW,
> > max(datTS$iter)))
> > }
> > }
> > divChng <- divChng[!is.na(divChng$ISEG),]
> >
> > [[alternative HTML version deleted]]
> >
> > ______________________________________________
> > R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide
> > http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
> >
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
[[alternative HTML version deleted]]
More information about the R-help
mailing list