[R] nested for loops too slow

Thierry Onkelinx thierry.onkelinx at inbo.be
Sun Apr 12 22:48:11 CEST 2015


You don't need loops at all.

    grw <- aggregate(gw ~ ts + ISEG + iter, data = dat, FUN = sum)
    GRW <- aggregate(gw ~ ts + ISEG, data = grw, FUN = function(x){max(x) -
min(x)})
    DC <- aggregate(div ~ ts + ISEG, data = subset(dat, IRCH == 1), FUN =
function(x){max(x) - min(x)})
    iter <- aggregate(iter ~ ts + ISEG, data = subset(dat, IRCH == 1), FUN
= max)
    tmp <- merge(DC, iter)
    merge(tmp, GRW)

another option is to use the plyr package

    library(plyr)
    merge(
      ddply(
        subset(dat, IRCH == 1),
        c("ts", "ISEG"),
        summarize,
        divChng = max(div) - min(div),
        max.iter = max(iter)
      ),
      ddply(
        dat,
        c("ts", "ISEG"),
        summarize,
        gwChng = diff(range(ave(gw, iter, FUN = sum)))
      )
    )

Best regards,

ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature and
Forest
team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance
Kliniekstraat 25
1070 Anderlecht
Belgium

To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to say
what the experiment died of. ~ Sir Ronald Aylmer Fisher
The plural of anecdote is not data. ~ Roger Brinner
The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of data.
~ John Tukey

2015-04-12 15:47 GMT+02:00 Morway, Eric <emorway op usgs.gov>:

> The small example below works lighting-fast; however, when I run the same
> script on my real problem, a 1Gb text file, the for loops have been running
> for over 24 hrs and I have no idea if the processing is 10% done or 90%
> done.  I have not been able to figure out a betteR way to code up the
> material within the for loops at the end of the example below.  The
> contents of divChng, the final product, are exactly what I'm after, but I
> need help formulating more efficient R script, I've got two more 1Gb files
> to process after the current one finishes, whenever that is...
>
> I appreciate any insights/solutions, Eric
>
> dat <- read.table(textConnection("ISEG  IRCH  div  gw
> 1  1  265  229
> 1  2  260  298
> 1  3  234  196
> 54  1  432  485
> 54  39  467  485
> 54  40  468  468
> 54  41  460  381
> 54  42  489  502
> 1  1  265  317
> 1  2  276  225
> 1  3  217  164
> 54  1  430  489
> 54  39  456  495
> 54  40  507  607
> 54  41  483  424
> 54  42  457  404
> 1  1  265  278
> 1  2  287  370
> 1  3  224  274
> 54  1  412  585
> 54  39  473  532
> 54  40  502  595
> 54  41  497  441
> 54  42  447  467
> 1  1  230  258
> 1  2  251  152
> 1  3  199  179
> 54  1  412  415
> 54  39  439  538
> 54  40  474  486
> 54  41  477  484
> 54  42  413  346
> 1  1  230  171
> 1  2  262  171
> 1  3  217  263
> 54  1  432  485
> 54  39  455  482
> 54  40  493  419
> 54  41  489  536
> 54  42  431  504
> 1  1  1002  1090
> 1  2  1222  1178
> 1  3  1198  1177
> 54  1  1432  1485
> 54  39  1876  1975
> 54  40  1565  1646
> 54  41  1455  1451
> 54  42  1427  1524
> 1  1  1002  968
> 1  2  1246  1306
> 1  3  1153  1158
> 54  1  1532  1585
> 54  39  1790  1889
> 54  40  1490  1461
> 54  41  1518  1536
> 54  42  1486  1585
> 1  1  1002  1081
> 1  2  1229  1262
> 1  3  1142  1241
> 54  1  1632  1659
> 54  39  1797  1730
> 54  40  1517  1466
> 54  41  1527  1589
> 54  42  1514  1612"),header=TRUE)
>
> dat$seq <- ifelse(dat$ISEG==1 & dat$IRCH==1, 1, 0)
> tmp <- diff(dat[dat$seq==1,]$div)!=0
> dat$idx <- 0
> dat[dat$seq==1,][c(TRUE,tmp),]$idx <- 1
> dat$ts <- cumsum(dat$idx)
> dat$iter <- ave(dat$seq, dat$ts,FUN=cumsum)
> dat$ct <- seq(1:length(dat[,1]))
>
> timeStep <- unique(dat$ts)
> SEG <- unique(dat$ISEG)
> divChng <- data.frame(ts=NA, ISEG=NA, divChng=NA, gwChng=NA, iter=NA)
>
> #Can the following be rescripted for better harnessing R's processing
> power?
>
> for (i in 1:length(timeStep)){
>   for (j in 1:length(SEG)){
>     datTS <- subset(dat,ts==timeStep[i] & ISEG==SEG[j] & IRCH==1)
>     datGW <- subset(dat,ts==timeStep[i] & ISEG==SEG[j])
>     grw <- aggregate(gw ~ iter, datGW, sum)
>
>     DC <- max(datTS$div)-min(datTS$div)
>     GRW <- max(grw$gw) - min(grw$gw)
>     divChng <- rbind(divChng,c(datTS$ts[1], SEG[j], DC, GRW,
> max(datTS$iter)))
>   }
> }
> divChng <- divChng[!is.na(divChng$ISEG),]
>
>         [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help op r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

	[[alternative HTML version deleted]]



More information about the R-help mailing list