[R] function that join my model & these coefficients
Jim Lemon
jim at bitwrit.com.au
Mon Jul 28 05:41:30 CEST 2014
On Sun, 27 Jul 2014 02:08:25 AM Maede Nouri wrote:
> hello
> I am new to R language. I fitted a linear model and my output has
about 300
> coefficients. I need to definition a function that join my model &
these
> coefficients ! this is difficult because number of coefficients is many.
I
> think there is not a provided query for this. I also used "fitted(fit) #
> predicted values" but it can't help me to recieve my goal. please
help
> me in finding the functions and merge my model & its coefficients.
>
>
> data2<-subset(data1,pd2<660000)
>
> > sapply(data2,mode)
>
> aid act acid id_new userid pd1
> pd2 pd3 pd4 pd5 freq1 freq2
> freq3 "numeric" "numeric" "numeric" "numeric" "character"
> "character" "character" "character" "character" "numeric"
"numeric"
> "numeric" "numeric" freq4 freq5
> "numeric" "numeric"
>
> > fit <- lm(act
> >
~freq1+freq2+freq3+freq4+freq5+pd1*freq1+pd2*freq2+pd3*freq3+pd4*freq4+pd
> > 5*freq5-1,data=data2) summary(fit)
>
> Call:
> lm(formula = act ~ freq1 + freq2 + freq3 + freq4 + freq5 + pd1 *
> freq1 + pd2 * freq2 + pd3 * freq3 + pd4 * freq4 + pd5 * freq5 -
> 1, data = data2)
>
> Residuals:
> Min 1Q Median 3Q Max
> -26.905 -2.843 0.000 1.606 33.059
>
> Coefficients: (233 not defined because of singularities)
> Estimate Std. Error t value Pr(>|t|)
> freq1 1.293e-01 1.753e-01 0.738 0.461206
> freq2 2.016e-01 3.310e-01 0.609 0.542809
> freq3 -4.816e+00 2.220e+00 -2.169 0.030795 *
> freq4 2.395e-01 1.751e+00 0.137 0.891272
> freq5 -9.289e+00 6.110e+00 -1.520 0.129394
> pd1630000 5.625e+00 5.978e+00 0.941 0.347445
> pd1646000 7.082e+00 1.410e+01 0.502 0.615714
> pd1648000 1.275e+00 4.240e+01 0.030 0.976027
> pd1651000 3.404e+00 5.694e+00 0.598 0.550352
> pd1656000 -8.177e+00 1.017e+01 -0.804 0.421906
> pd1665000 3.795e+00 5.649e+00 0.672 0.502231
> pd1666000 9.805e+00 5.857e+00 1.674 0.095058 .
> pd2651000 4.790e+00 6.122e+00 0.782 0.434510
> pd2656000 1.754e+00 5.620e+00 0.312 0.755221
> pd2659000 4.187e-01 9.814e+00 0.043 0.965996
> pd3630000 -7.989e+00 5.629e+00 -1.419 0.156780
> pd3646000 -1.638e+00 1.772e+01 -0.092 0.926444
> pd3648000 -4.021e+00 7.725e+00 -0.521 0.602998
> pd3651000 -4.848e+00 6.400e+00 -0.758 0.449243
> pd3656000 -6.105e-01 8.732e+00 -0.070 0.944303
> pd3659000 4.474e+00 7.483e+00 0.598 0.550296
> pd3663000 1.299e+02 4.969e+01 2.614 0.009360 **
> pd3737082 NA NA NA NA
> pd3737110 9.847e+01 3.120e+01 3.156 0.001744 **
> pd3738240 5.675e+00 1.223e+01 0.464 0.643073
> pd4646000 8.603e+00 1.751e+01 0.491 0.623605
> pd4648000 3.040e+00 4.848e+00 0.627 0.531064
> pd4651000 9.141e-01 5.243e+00 0.174 0.861689
> pd5 1.132e-06 3.440e-06 0.329 0.742355
> freq1:pd1646000 NA NA NA NA
> freq1:pd1648000 -1.786e+00 1.267e+01 -0.141 0.888002
> freq2:pd2646000 1.369e+01 1.666e+01 0.822 0.411865
> freq2:pd2648000 1.396e+00 2.172e+00 0.643 0.520933
> freq3:pd3693000 3.270e+00 2.557e+00 1.279 0.201910
> freq3:pd3694000 7.476e+00 3.571e+00 2.094 0.037035 *
> freq3:pd3699000 5.310e+00 2.187e+00 2.429 0.015679 *
>
>
Hi Maede,
The number of singularities strongly suggests that you have way too
few data points to attempt a model with that many interaction terms.
Even so, such a model would be exceedingly difficult to interpret. The
numbered variables wouldn't be repeated observations, would they?
Jim
More information about the R-help
mailing list