[R] how to test the random factor effect in lme
Greg Snow
538280 at gmail.com
Wed Feb 15 22:37:06 CET 2012
This post https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q1/001819.html
may help you understand why the standard p-values in some cases are
not the right thing to do and what one alternative is.
On Tue, Feb 14, 2012 at 3:36 PM, Xiang Gao <xianggao2006 at gmail.com> wrote:
> Hi
>
> I am working on a Nested one-way ANOVA. I don't know how to implement
> R code to test the significance of the random factor
>
> My R code so far can only test the fixed factor :
>
> anova(lme(PCB~Area,random=~1|Sites, data = PCBdata))
> numDF denDF F-value p-value
> (Intercept) 1 12 1841.7845 <.0001
> Area 1 4 4.9846 0.0894
>
>
> Here is my data and my hand calculation.
>
>> PCBdata
> Area Sites PCB
> 1 A 1 18
> 2 A 1 16
> 3 A 1 16
> 4 A 2 19
> 5 A 2 20
> 6 A 2 19
> 7 A 3 18
> 8 A 3 18
> 9 A 3 20
> 10 B 4 21
> 11 B 4 20
> 12 B 4 18
> 13 B 5 19
> 14 B 5 20
> 15 B 5 21
> 16 B 6 19
> 17 B 6 23
> 18 B 6 21
>
> By hand calculation, the result should be:
> Source SS DF MS
> Areas 18.00 1 18.00
> Sites 14.44 4 3.61
> Error 20.67 12 1.72
> Total 53.11 17 ---
>
>
> MSareas/MSsites = 4.99 --- matching the R output
> MSsites/MSE = 2.10
> Conclusion is that Neither of Areas nor Sites make differences.
>
>
> My R code so far can only test the fixed effect :
>
> anova(lme(PCB~Area,random=~1|Sites, data = PCBdata))
> numDF denDF F-value p-value
> (Intercept) 1 12 1841.7845 <.0001
> Area 1 4 4.9846 0.0894
>
>
>
> --
> Xiang Gao, Ph.D.
> Department of Biology
> University of North Texas
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
--
Gregory (Greg) L. Snow Ph.D.
538280 at gmail.com
More information about the R-help
mailing list