[R] predict missing values with svm
James W. MacDonald
jmacdon at med.umich.edu
Mon Sep 28 16:32:53 CEST 2009
Hi Andreas,
Andreas Wittmann wrote:
> Dear R-Users,
>
> i want to use the function svm of the e1071 package to predict missing data
>
> ############################################################
>
> data(iris)
>
> ## create missing completely at random data
> for (i in 1:5)
> {
> mcar <- rbinom(dim(iris)[1], size=1, prob=0.1)
> iris[mcar == 1, i] <- NA
> }
>
> ok <- complete.cases(iris)
>
> model <- svm(Species ~ ., data=iris[ok,])
>
> ## try to predict the missing values for Species
> ## neither
> pred <- predict(model, iris[5])
> ## nor
> pred <- predict(model, iris[!ok, -5])
> ## seems to work....
ind <- is.na(iris[,5]) & !apply(iris[,-5], 1, function(x) any(is.na(x))
predict(model, iris[ind,-5])
Best,
Jim
>
> Many thanks if anyone could tell me what i do wrong and what is the
> problem here.
>
> best regards
>
> Andreas
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
> http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
--
James W. MacDonald, M.S.
Biostatistician
Douglas Lab
University of Michigan
Department of Human Genetics
5912 Buhl
1241 E. Catherine St.
Ann Arbor MI 48109-5618
734-615-7826
More information about the R-help
mailing list