[R] predict missing values with svm
Friedrich Leisch
friedrich.leisch at stat.uni-muenchen.de
Mon Sep 28 16:30:38 CEST 2009
>>>>> On Mon, 28 Sep 2009 16:12:11 +0200,
>>>>> Andreas Wittmann (AW) wrote:
That is a bug in predict.svm, I will inform David Meyer, the author of
the function.
Best,
Fritz
> Dear R-Users,
> i want to use the function svm of the e1071 package to predict missing data
> ############################################################
> data(iris)
> ## create missing completely at random data
> for (i in 1:5)
> {
> mcar <- rbinom(dim(iris)[1], size=1, prob=0.1)
> iris[mcar == 1, i] <- NA
> }
> ok <- complete.cases(iris)
> model <- svm(Species ~ ., data=iris[ok,])
> ## try to predict the missing values for Species
> ## neither
> pred <- predict(model, iris[5])
> ## nor
> pred <- predict(model, iris[!ok, -5])
> ## seems to work....
> Many thanks if anyone could tell me what i do wrong and what is the
> problem here.
> best regards
> Andreas
More information about the R-help
mailing list