[R] Matrix calculations in R--erroneous?
Thomas Lumley
tlumley at u.washington.edu
Fri Oct 7 19:12:30 CEST 2005
On Fri, 7 Oct 2005, Peter Muhlberger wrote:
> Does anyone know how -log(x) can equal 743 but -log(x+0)=Inf? That's what
> the following stream of calculations suggest:
>
> Browse[2]> -log ( 1e-323+yMat2 - yMat1 * logitShape(matrix(parsList$Xs,
> nrow = numXs, ncol=numOfCurves), matrix(means, nrow = numXs,
> ncol=numOfCurves, byrow=TRUE), matrix(sigmas, nrow = numXs,
> ncol=numOfCurves, byrow=TRUE)) )[5,9]
> [1] Inf
>
> Yet:
>
> Browse[2]> logitShape(matrix(parsList$Xs, nrow = numXs, ncol=numOfCurves),
> matrix(means, nrow = numXs, ncol=numOfCurves, byrow=TRUE), matrix(sigmas,
> nrow = numXs, ncol=numOfCurves, byrow=TRUE))[5,9]
> [1] 1
>
> So, the logitShape component equals 1.
to within 2e-16
> Browse[2]> yMat1[5,9]
> [1] 1
>
> So yMat1[5,9]*logitShape()[5,9]=1
to within 2e-16
> Browse[2]> yMat2[5,9]
> [1] 1
to within 2e-16
> So, yMat2[5,9]-yMat1[5,9]*logitShape()[5,9]=0
to within a few parts in 10^16
You haven't actually shown us yMat2[5,9]-yMat1[5,9]*logitShape()[5,9],
though
> Browse[2]> -log ( 1e-323)
> [1] 743.7469
>
> So, -log( 1e-323)=743 while -log( 1e-323+0)=Inf ?
>
If "0" is really of the order of 1e-16 then this isn't surprising. If the
only point of 1e-323 is as a guard value for 0 then use max(1e-323,
yMat2[5,9]-yMat1[5,9]*logitShape()[5,9])
-thomas
More information about the R-help
mailing list