[R] need an R-squared from a nls logistic sigmoid fit
Gabor Grothendieck
ggrothendieck at gmail.com
Mon Jun 6 02:22:05 CEST 2005
On 6/5/05, James Salsman <james at bovik.org> wrote:
> Why doesn't nls() produce any kind of R-squared value? In the absence
> of such information, how are we supposed to compare one fit to another
> when the y-axis scale changes?
>
> > sm <- nls(y ~ SSfpl(x, miny, maxy, midx, grad))
> > summary(sm)
>
> Formula: y ~ SSfpl(x, miny, maxy, midx, grad)
>
> Parameters:
> Estimate Std. Error t value Pr(>|t|)
> miny -0.5845 4.6104 -0.127 0.90524
> maxy 7.2680 1.5512 4.686 0.00941 **
> midx 16.9187 2.2340 7.573 0.00163 **
> grad 1.7283 1.9150 0.903 0.41782
> ---
> Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
>
> Residual standard error: 1.13 on 4 degrees of freedom
>
> Correlation of Parameter Estimates:
> miny maxy midx
> maxy -0.6654
> midx 0.8936 -0.3221
> grad -0.9068 0.8477 -0.6865
>
One uses anova (which has an anova.nls method) to compare two
nls models.
More information about the R-help
mailing list