[R] need an R-squared from a nls logistic sigmoid fit
James Salsman
james at bovik.org
Mon Jun 6 01:49:41 CEST 2005
Why doesn't nls() produce any kind of R-squared value? In the absence
of such information, how are we supposed to compare one fit to another
when the y-axis scale changes?
> sm <- nls(y ~ SSfpl(x, miny, maxy, midx, grad))
> summary(sm)
Formula: y ~ SSfpl(x, miny, maxy, midx, grad)
Parameters:
Estimate Std. Error t value Pr(>|t|)
miny -0.5845 4.6104 -0.127 0.90524
maxy 7.2680 1.5512 4.686 0.00941 **
midx 16.9187 2.2340 7.573 0.00163 **
grad 1.7283 1.9150 0.903 0.41782
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 1.13 on 4 degrees of freedom
Correlation of Parameter Estimates:
miny maxy midx
maxy -0.6654
midx 0.8936 -0.3221
grad -0.9068 0.8477 -0.6865
>
More information about the R-help
mailing list