[R] logistic regression: categorical value, and multinomial
ronggui
0034058 at fudan.edu.cn
Wed Jul 27 18:42:22 CEST 2005
> d<-data.frame(y=sample(letters[1:2],100,T),x=rnorm(100))
> head(d,10)
y x
1 b 0.55915620
2 b 0.87575380
3 b -0.13093156
4 b 0.75925729
5 b 0.40233427
6 b 1.34685918
7 a 1.10487752
8 a -2.27456596
9 a 1.65919787
10 b 0.05095611
> glm(y~x,data=d,family=binomial)
Call: glm(formula = y ~ x, family = binomial, data = d)
Coefficients:
(Intercept) x
0.2771 0.5348
Degrees of Freedom: 99 Total (i.e. Null); 98 Residual
Null Deviance: 136.1
Residual Deviance: 129.5 AIC: 133.5
======= 2005-07-28 00:22:55 ÄúÔÚÀ´ÐÅÖÐдµÀ£º=======
>I have two questions:
>
>1. If I want to do a binomial logit, how to handle the
>categorical response variable? Data for the response
>variables are not numerical, but text.
>
>2. What if I want to do a multinomial logit, still
>with categorical response variable? The variable has 5
>non-numerical response levels, I have to do it with a
>multinomial logit.
>
>Any input is highly appreciated! Thanks!
>
>Ed
>
>______________________________________________
>R-help at stat.math.ethz.ch mailing list
>https://stat.ethz.ch/mailman/listinfo/r-help
>PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
= = = = = = = = = = = = = = = = = = = =
2005-07-28
------
Deparment of Sociology
Fudan University
Blog:http://sociology.yculblog.com
More information about the R-help
mailing list