[R] gnls or nlme : how to obtain confidence intervals of fitted values
Spencer Graves
spencer.graves at pdf.com
Sat Oct 2 17:19:02 CEST 2004
Pinhiero and Bates (2000) Mixed-Effects Models in S and S-Plus
(Springer) describe the use of "intervals" for that. In library(nlme),
R 1.9.1 for Windows, I found documentation for intervals, intervals.gls,
intervals.lme, intervals.lmList, and gnls. To an example in the
documentation for gnls, I added intervals:
> data(Soybean)
> # variance increases with a power of the absolute fitted values
> fm1 <- gnls(weight ~ SSlogis(Time, Asym, xmid, scal), Soybean,
+ weights = varPower())
> summary(fm1)
Generalized nonlinear least squares fit
Model: weight ~ SSlogis(Time, Asym, xmid, scal)
Data: Soybean
AIC BIC logLik
983.7947 1003.900 -486.8974
Variance function:
Structure: Power of variance covariate
Formula: ~fitted(.)
Parameter estimates:
power
0.8815437
Coefficients:
Value Std.Error t-value p-value
Asym 17.35682 0.5226885 33.20682 0
xmid 51.87232 0.5916820 87.66925 0
scal 7.62053 0.1390958 54.78617 0
Correlation:
Asym xmid
xmid 0.787
scal 0.485 0.842
Standardized residuals:
Min Q1 Med Q3 Max
-2.309670367 -0.646844555 -0.004897024 0.498606088 4.986727281
Residual standard error: 0.3662752
Degrees of freedom: 412 total; 409 residual
> intervals(fm1)
Approximate 95% confidence intervals
Coefficients:
lower est. upper
Asym 16.329331 17.356822 18.384313
xmid 50.709200 51.872317 53.035434
scal 7.347094 7.620525 7.893957
attr(,"label")
[1] "Coefficients:"
Variance function:
lower est. upper
power 0.8369085 0.8815437 0.926179
attr(,"label")
[1] "Variance function:"
Residual standard error:
lower est. upper
0.3373374 0.3649392 0.3947995
Is this what you want?
hope this helps.
spencer graves
Pierre MONTPIED wrote:
> Hi
>
> I use gnls to fit non linear models of the form y = alpha * x**beta
> (alpha and beta being linear functions of a 2nd regressor z i.e.
> alpha=a1+a2*z and beta=b1+b2*z) with variance function
> varPower(fitted(.)) which sounds correct for the data set I use.
>
> My purpose is to use the fitted models for predictions with other sets
> of regressors x, z than those used in fitting. I therefore need to
> estimate y with (95%) confidence intervals.
>
> Does any body knows how to do this with R ?
>
> Thanks
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide!
> http://www.R-project.org/posting-guide.html
--
Spencer Graves, PhD, Senior Development Engineer
O: (408)938-4420; mobile: (408)655-4567
More information about the R-help
mailing list