[R] Explaining Survival difference between Stata and R
Thomas Lumley
tlumley at u.washington.edu
Tue May 11 16:10:36 CEST 2004
On Mon, 10 May 2004, Paul Johnson wrote:
> Dear Everybody:
>
> I'm doing my usual "how does that work in R" thing with some Stata
> projects. I find a gross gap between the Stata and R in Cox PH models,
> and I hope you can give me some pointers about what goes wrong. I'm
> getting signals from R/Survival that the model just can't be estimated,
> but Stata spits out numbers just fine.
>
> I wonder if I should specify initial values for coxph?
It's worth a try. The other question is whether Stata has in fact
converged -- if the range of rqe is not small then its coefficient may
actually be infinite.
> I got a dataset from a student who uses Stata and try to replicate in R.
> I will share data to you in case you want to see for yourself. Let me
> know if you want text or Stata data file.
I'd like to look at the data. We should be able to get coxph to converge
when there is a finite mle -- the log partial likelihood is concave.
-thomas
> In R, I try this:
>
> > cox2 <- coxph(Surv(yrs2,ratify)~ accession+ haz.wst+ haz.in +haz.out+
> wefgov+ rle+ rqe + pol.free +tai.2001 + ny.gdp.pcap.pp.cd + eio,
> data=dat3, control=coxph.control(iter.max=1000),singular.ok=T)
> Warning message:
> Ran out of iterations and did not converge in: fitter(X, Y, strats,
> offset, init, control, weights = weights,
>
> So I wrote out the file exatly as it was in R into Stata dataset
>
> > write.dta(dat3,"cleanBasel.dta")
> Warning message:
> Abbreviating variable names in: write.dta(dat3, "cleanBasel.dta")
>
>
> Here's the Stata output:
>
> . use "/home/pauljohn/ps/ps909/AdvancedRegression/duration_2/cleanBasel.dta"
> (Written by R. )
>
> . stset yrs2, failure (ratify)
>
> failure event: ratify != 0 & ratify < .
> obs. time interval: (0, yrs2]
> exit on or before: failure
>
> ----------------------------------------------------------------------------
> > --
> 21 total obs.
> 0 exclusions
> ----------------------------------------------------------------------------
> > --
> 21 obs. remaining, representing
> 21 failures in single record/single failure data
> 78 total analysis time at risk, at risk from t = 0
> earliest observed entry t = 0
>
> . stcox accessin haz_wst haz_in haz_out wefgov rle rqe pol_free
> tai_2001 ny_gd eio, robust
> > nohr
>
> failure _d: ratify
> analysis time _t: yrs2
>
> Iteration 0: log pseudo-likelihood = -49.054959
> Iteration 1: log pseudo-likelihood = -45.021682
> Iteration 2: log pseudo-likelihood = -44.525187
> Iteration 3: log pseudo-likelihood = -44.521588
> Iteration 4: log pseudo-likelihood = -44.521586
> Refining estimates:
> Iteration 0: log pseudo-likelihood = -44.521586
>
> Cox regression -- Breslow method for ties
>
> No. of subjects = 21 Number of obs =
> 21
> No. of failures = 21
> Time at risk = 78
> Wald chi2(11) =
> 81.64
> Log pseudo-likelihood = -44.521586 Prob > chi2 =
> 0.0000
>
> ------------------------------------------------------------------------------
> | Robust
> _t | Coef. Std. Err. z P>|z|
> -------------+----------------------------------------------------------------
> accessin | -1.114101 .6343663 -1.76 0.079
> haz_wst | 2.32e-08 1.08e-07 0.22 0.829
> haz_in | 3.78e-06 2.46e-06 1.54 0.124
> haz_out | -3.80e-07 3.76e-07 -1.01 0.312
> wefgov | 2.139127 .9136992 2.34 0.019
> rle | 1.827482 1.500878 1.22 0.223
> rqe | -3.126696 1.332069 -2.35 0.019
> pol_free | -.4498276 .291764 -1.54 0.123
> tai_2001 | -2.895922 2.577401 -1.12 0.261
> ny_gd___ | -.0003223 .0002194 -1.47 0.142
> eio | -.0577773 .0726064 -0.80 0.426
> ------------------------------------------------------------------------------
>
> .
> last observed exit t = 7
>
>
> ----------------------------------
>
>
>
> Paul Johnson
> Dept. of Political Science
> University of Kansas
>
> ______________________________________________
> R-help at stat.math.ethz.ch mailing list
> https://www.stat.math.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
>
Thomas Lumley Assoc. Professor, Biostatistics
tlumley at u.washington.edu University of Washington, Seattle
More information about the R-help
mailing list