[R] Explaining Survival difference between Stata and R
Paul Johnson
pauljohn at ku.edu
Tue May 11 01:59:46 CEST 2004
Dear Everybody:
I'm doing my usual "how does that work in R" thing with some Stata
projects. I find a gross gap between the Stata and R in Cox PH models,
and I hope you can give me some pointers about what goes wrong. I'm
getting signals from R/Survival that the model just can't be estimated,
but Stata spits out numbers just fine.
I wonder if I should specify initial values for coxph?
I got a dataset from a student who uses Stata and try to replicate in R.
I will share data to you in case you want to see for yourself. Let me
know if you want text or Stata data file.
In R, I try this:
> cox2 <- coxph(Surv(yrs2,ratify)~ accession+ haz.wst+ haz.in +haz.out+
wefgov+ rle+ rqe + pol.free +tai.2001 + ny.gdp.pcap.pp.cd + eio,
data=dat3, control=coxph.control(iter.max=1000),singular.ok=T)
Warning message:
Ran out of iterations and did not converge in: fitter(X, Y, strats,
offset, init, control, weights = weights,
So I wrote out the file exatly as it was in R into Stata dataset
> write.dta(dat3,"cleanBasel.dta")
Warning message:
Abbreviating variable names in: write.dta(dat3, "cleanBasel.dta")
Here's the Stata output:
. use "/home/pauljohn/ps/ps909/AdvancedRegression/duration_2/cleanBasel.dta"
(Written by R. )
. stset yrs2, failure (ratify)
failure event: ratify != 0 & ratify < .
obs. time interval: (0, yrs2]
exit on or before: failure
----------------------------------------------------------------------------
> --
21 total obs.
0 exclusions
----------------------------------------------------------------------------
> --
21 obs. remaining, representing
21 failures in single record/single failure data
78 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
. stcox accessin haz_wst haz_in haz_out wefgov rle rqe pol_free
tai_2001 ny_gd eio, robust
> nohr
failure _d: ratify
analysis time _t: yrs2
Iteration 0: log pseudo-likelihood = -49.054959
Iteration 1: log pseudo-likelihood = -45.021682
Iteration 2: log pseudo-likelihood = -44.525187
Iteration 3: log pseudo-likelihood = -44.521588
Iteration 4: log pseudo-likelihood = -44.521586
Refining estimates:
Iteration 0: log pseudo-likelihood = -44.521586
Cox regression -- Breslow method for ties
No. of subjects = 21 Number of obs =
21
No. of failures = 21
Time at risk = 78
Wald chi2(11) =
81.64
Log pseudo-likelihood = -44.521586 Prob > chi2 =
0.0000
------------------------------------------------------------------------------
| Robust
_t | Coef. Std. Err. z P>|z|
-------------+----------------------------------------------------------------
accessin | -1.114101 .6343663 -1.76 0.079
haz_wst | 2.32e-08 1.08e-07 0.22 0.829
haz_in | 3.78e-06 2.46e-06 1.54 0.124
haz_out | -3.80e-07 3.76e-07 -1.01 0.312
wefgov | 2.139127 .9136992 2.34 0.019
rle | 1.827482 1.500878 1.22 0.223
rqe | -3.126696 1.332069 -2.35 0.019
pol_free | -.4498276 .291764 -1.54 0.123
tai_2001 | -2.895922 2.577401 -1.12 0.261
ny_gd___ | -.0003223 .0002194 -1.47 0.142
eio | -.0577773 .0726064 -0.80 0.426
------------------------------------------------------------------------------
.
last observed exit t = 7
----------------------------------
Paul Johnson
Dept. of Political Science
University of Kansas
More information about the R-help
mailing list