[R] applying data generating function
Gabor Grothendieck
ggrothendieck at myway.com
Mon Mar 8 05:02:17 CET 2004
Regarding your comment on speed varying when replicating the
runs, try running gc() first.
---
Date: Sun, 07 Mar 2004 17:56:46 -0800
From: Spencer Graves <spencer.graves at pdf.com>
To: Peter Dalgaard <p.dalgaard at biostat.ku.dk>
Cc: Fred J. <phddas at yahoo.com>,r-help <r-help at stat.math.ethz.ch>
Subject: Re: [R] applying data generating function
Peter's enumeration of alternatives inspired me to compare compute
times for N = 10^(2:5), with the following results:
*** R 1.8.1 under Windows 2000, IBM Thinkpad T30:
10 100 1000 10000 1e+05
for loop 0 0.01 0.09 1.27 192.05
gen e + for loop 0 0.00 0.03 0.22 2.58
create storage + for loop 0 0.01 0.05 0.34 3.45
sapply 0 0.00 0.04 0.28 3.82
replicate 0 0.01 0.05 0.29 4.02
I repeated this with the "for loop" both first and last. The
times tended to decline on replication, with the "for loop" time for N =
1e5 = 182.02, 126.04 (with the "for loop" last), 130.30 ("for loop"
last), and 118.64 ("for loop" first again).
Conclusions:
(1) Apparently, in some cases, R picks up speed upon replication
(2) The first 3 times for the "for loop" with N = 1e5 made me
wonder if there was an order effect, with the "for loop" being longer in
the first position. However, the last run with the "for loop" again
first had the shortest time of 118.64, contradicting that hypothesis.
By comparison, I also tried this under S-Plus 6.2:
*** S-Plus 6.2, Windows 2000, IBM Thinkpad T30 ("for loop" first):
10 100 1000 10000 100000
for loop 0.01 0.05 0.331 3.976 273.073
gen e + for loop 0.00 0.04 0.320 3.154 29.112
create storage + for loop 0.01 0.03 0.231 2.113 22.242
sapply 0.00 0.04 0.380 4.757 23.003
The script I used appears below. As Peter said, "the only really
crucial [issue] is to avoid the inefficient append by preallocating" the
vectors to be generated. Moreover, this is only an issue for long loop,
with a threshold of between 1e4 and 1e5 in this example. For shorter
loops, the programmers' time is far more valuable.
Enjoy. spencer graves
####################
N.gen <- c(10, 100, 1000, 10000, 1e5)
mtds <- c("for loop", "gen e + for loop", "create storage + for loop",
"sapply", "replicate")
m <- length(N.gen)
ellapsed.time <- array(NA, dim=c(m, length(mtds)))
dimnames(ellapsed.time) <- list(N.gen, mtds)
for(iN in 1:m){
cat("\n", iN, "")
N <- N.gen[iN]
#for loop
set.seed(123)
start.time <- proc.time()
f<-function (x.) { 3.8*x.*(1-x.) + rnorm(1,0,.001) }
v=c()
x=.1 # starting point
for (i in 1:N) { x=f(x); v=append(v,x) }
ellapsed.time[iN, "for loop"] <- (proc.time()-start.time)[3]
cat(mtds[1], "")
#gen e + for loop
set.seed(123)
start.time <- proc.time()
e <- 0.001*rnorm(N)
X <- rep(0.1, N+1)
for(i in 2:(N+1))
X[i] <- (3.8*X[i-1]*(1-X[i-1])+e[i-1])
ellapsed.time[iN, "gen e + for loop"] <- (proc.time()-start.time)[3]
cat(mtds[2], "")
#create storage + for loop
set.seed(123)
start.time <- proc.time()
V <- numeric(N)
xv <- .1 ; for (i in 1:N) { xv <- f(xv); V[i] <- xv }
ellapsed.time[iN, "create storage + for loop"] <-
(proc.time()-start.time)[3]
cat(mtds[3], "")
#sapply
set.seed(123)
start.time <- proc.time()
xa <- .1 ; va <- sapply(1:N, function(i) xa <<- f(xa))
ellapsed.time[iN, "sapply"] <- (proc.time()-start.time)[3]
cat(mtds[4], "")
if(!is.null(version$language)){
#replicate
set.seed(123)
start.time <- proc.time()
z <- .1 ; vr <- replicate(N, z <<- f(z))
ellapsed.time[iN, "replicate"] <- (proc.time()-start.time)[3]
cat(mtds[5], "")
}
}
t(ellapsed.time)
#############################
Peter Dalgaard wrote:
>Christophe Pallier <pallier at lscp.ehess.fr> writes:
>
>
>
>>Fred J. wrote:
>>
>>
>>
>>>I need to generate a data set based on this equation
>>>X(t) = 3.8x(t-1) (1-x(t-1)) + e(t), where e(t) is a
>>>N(0,0,001) random variable
>>>I need say 100 values.
>>>
>>>How do I do this?
>>>
>>>
>>I assume X(t) and x(t) are the same (?).
>>
>>f<-function (x) { 3.8*x*(1-x) + rnorm(1,0,.001) }
>>v=c()
>>x=.1 # starting point
>>for (i in 1:100) { x=f(x); v=append(v,x) }
>>
>>There may be smarter ways...
>>
>>
>
>Yes, but the only really crucial one is to avoid the inefficient append by
>preallocating the v:
>
>v <- numeric(100)
>x <- .1 ; for (i in 1:100) { x <- f(x); v[i] <- x }
>
>apart from that you can use implicit loops:
>
>x <- .1 ; v <- sapply(1:100, function(i) x <<- f(x))
>
>or
>
>z <- .1 ; v <- replicate(100, z <<- f(z))
>
>(You cannot use x there because of a variable capture issue which is a
>bit of a bug. I intend to fix it for 1.9.0.)
>
>
>
More information about the R-help
mailing list