[R] Another NEWBIE
Frank E Harrell Jr
f.harrell at vanderbilt.edu
Sun Jun 20 14:44:24 CEST 2004
Charles and Kimberly Maner wrote:
> Hi Frank. I am (somewhat) new to R as well, but almost a 10 yr SAS veteran.
> I work for a very large US Bank and have spent a considerable part of my
> career in Corp Mktg leveraging data for, arguably, data mining, next
> purchase, attrition, balance diminishment and the like. I am now managing
> an Operations Research group in their Customer Service and Support (aka
> Telephone/Call Center Support) within the forecasting and analytics group.
> What I have found, broadly and personally, regarding R vs. sAS is the
> following:
>
> 1. You simply can't beat the price of R vs. Insightful Corp.'s S-Splus, not
> to mention SAS.
> 2. The support folks for R are among the very best, (e.g., most helpful,
> energetic and enthusiastic to help)
> 3. R is far, far leaner from what I have seen thus far for modeling,
> binning/discretizing, graphing, etc. vs. SAS.
Thanks for your note. I assume you meant to say 'more capable' rather
than 'leaner'.
> 4. SAS is, per a previous post, (quite debatably) superior for manipulation
> and handling of fantastically large datasets. I have found that R's
> strength is not really in merging datasets and dataset manipulation.
> Although, major caveat here, it greatly depends on what you need done to the
> data. For lagging, diffing, binning, R is superior. For match merging, at
> this stage, I vote for SAS. (Again, I stress I've only 6-8 mos of moderate
> R experience.)
You are right, for huge datasets. For others, R is great, even for
merging. Many examples are provided in the Alzola and Harrell text on
http://biostat.mc.vanderbilt.edu
> 5. The challenge with R is, perhaps, it's very strength--language density.
> Once I learn how to do something in R vs. SAS, R's code is fractionally as
> large as SAS. Literally, it may take 10 lines of code in SAS vs. a one
> liner in R. That's powerful. However, due to my SAS experience, I've
> banged out the SAS code and am still looking/hunting for the R equivalent.
> However, once doing so, it's, borrowing from a popular vegetable drink
> slogan, "Wow, I could have done that in R."
Yes I agree.
> 6. And, lastly, while R is well documented, I seem to find one of the areas
> of documentation somewhat lacking is a great big R "recipe" book.
> (Suggestions, BTW, are welcome here.) Documentation of the R language is in
> place with more being published, (alongside S-Plus), annually. However,
> there does not appear to be, for example, an "R Transition Recipes for
> Experienced SAS Users" book. That, ultimately, is what would help me, (I
> think.) Again, the issue really is simply learning and using the language.
> Experienced R users, I'm convinced, could do everything R I'm doing in SAS,
> (with money left over for a few coffees at Starbuck's).
I agree. What I really think is needed is a compendium of examples,
especially for data manipulation. I gave a talk about this last week;
abstract is at
http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/FrankHarrellrmanip
with links to other places. A meager attempt at navigating some of the
more commonly used R functions is at
http://biostat.mc.vanderbilt.edu/s/finder/finder.html
>
> In conclusion, I still think that, given one's budget and projects, there's
> a place for SAS and R to co-exist. But, that paradigm diminishes as (1) the
> size of the datasets become smaller and, (2) your problems are more
> academic/researchy/specific in nature. For graphing, esp. w/the Lattice
> package, R is simply superior (IMHO), period, to SAS. (For some reason, SAS
> has just not felt the need to improve their graphics, at least the SAS/Graph
> part of their offering.) And, for the SAS lovers out there, this opinion is
> mine only as I continue to be primarily a SAS client attempting to
> transition to R.
>
> Frank, while I've probably been too wordy, I've attempted to provide another
> perspective for you. Good luck.
No, well said,
Thanks,
Frank
>
>
> Thanks,
> Charles
>
>
> ------------------------------
>
> Message: 7
> Date: Sat, 19 Jun 2004 18:15:19 +0200 (MEST)
> From: "F.Kalder" <Kalderf at gmx.de>
> Subject: Re: [R] Another NEWBIE
> To: r-help at stat.math.ethz.ch
> Message-ID: <6411.1087661719 at www45.gmx.net>
> Content-Type: text/plain; charset="us-ascii"
>
> Hi,
>
> Thank you all who anwered me.
>
> I think, I mainly thought to understand the difference between SPSS /SAS and
> R, but didn't really get the point (what explains the question, wich metods
> R can't do). Maybe, because I don't have much experience with programming
> (near to none). My background in stats goes also only back to indroductory
> classes and an advanced course in multivariate statistics. To this, I'm
> working with Hair, Anderson, Tatham & Blacks's "Multivariate Data Analysis"
> (5th Ed.) as my ressource, mainly with questionnaire analysis (Reliability
> Analysis and Factor Analysis, also MDS, Conjoint etc. plus sometimes
> standard MANOVA, Multiplke Regression etc.). So, maybe my stats aren't
> sophisticated enough to use R, I'm just a standard user of applied
> statistical methods, not an academic researcher or even a statistician. It
> was mainly a descision by costs, because R is free software.
> With the concept, I completely mistook the R concept as a programming
> environment more as a kind of advanced SPSS Syntax (because I also would
> call it "programming" when using it), which I now know, is completely wrong.
>
> So, I again thank for your help.
>
>
> Cheers, Frank.
>
> --
--
Frank E Harrell Jr Professor and Chair School of Medicine
Department of Biostatistics Vanderbilt University
More information about the R-help
mailing list