[BioC] multi-level design - a simplified question - corrected table
Rao,Xiayu
XRao at mdanderson.org
Thu Jul 31 00:01:34 CEST 2014
Hello all,
I do need some help on analyzing such unorganized data. Please help me out. Thank you so much!
I basically followed the analysis of multi-level experiments in limma user guide. But I do not feel right about the code below. Please give me some suggestions.
# I want to compare Normal vs. Tumor negative, and Normal vs Tumor positive. There are partial pairing (subject) and batch effect (chip).
Treat <- factor(paste(targets$chip,targets$type,sep="."))
design <- model.matrix(~0+Treat)
colnames(design) <- levels(Treat)
corfit <- duplicateCorrelation(y,design,block=targets$subject)
corfit$consensus
fit <- lmFit(y,design,block=targets$subject,correlation=corfit$consensus)
cm <- makeContrasts(TposvsN=(a1.Tpos+a2.Tpos+a3.Tpos)/3-(a1.N+a2.N)/2, TnegvsN=(a1.Tneg+a3.Tneg)/2-(a1.N+a2.N)/2, levels=design) ????
fit2 <- contrasts.fit(fit, cm)
fit2 <- eBayes(fit2)
topTable(fit2, coef=1, sort.by="p")
sample type subject chip
s1 Tneg 1 a1
s2 N 1 a1
s3 Tpos 2 a1
s4 N 2 a1
s5 Tneg 3 a1
s6 N 3 a1
s7 Tpos 4 a1
s8 N 4 a1
s9 Tpos 5 a2
s10 N 5 a2
s11 N 6 a2
s12 Tpos 7 a2
s13 N 7 a2
s14 Tpos 8 a2
s15 N 8 a2
s16 Tneg 9 a3
s17 Tneg 10 a3
s18 Tneg 11 a3
s19 Tpos 6 a3
s20 Tpos 12 a3
s21 Tneg 13 a3
s22 Tpos 14 a3
Thanks,
Xiayu
More information about the Bioconductor
mailing list