[BioC] metabolomics data analysis
Laurent Gatto
lg390 at cam.ac.uk
Wed Sep 4 17:23:55 CEST 2013
A good start might be to have a look at the metabolomics biocView:
http://bioconductor.org/packages/release/BiocViews.html#___Metabolomics
Best wishes,
Laurent
On 4 September 2013 15:29, guest [guest] <guest at bioconductor.org> wrote:
>
> Dear Users,
>
> Do you know any package is designed for metabolomics data? or any package can be used to analyze metabolomics data? I have no experience analyze metabolomics data, it should be quite different from microarray.
>
> Thanks,
>
>
> -- output of sessionInfo():
>
>> sessionInfo()
> R version 3.0.1 (2013-05-16)
> Platform: x86_64-apple-darwin10.8.0 (64-bit)
>
> locale:
> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
>
> attached base packages:
> [1] splines parallel stats graphics grDevices utils datasets methods base
>
> other attached packages:
> [1] WGCNA_1.27-1 doParallel_1.0.3 iterators_1.0.6 foreach_1.4.1
> [5] MASS_7.3-27 reshape_0.8.4 plyr_1.8 Hmisc_3.12-2
> [9] Formula_1.1-1 survival_2.37-4 flashClust_1.01-2 dynamicTreeCut_1.60
> [13] impute_1.34.0 affy_1.38.1 cluster_1.14.4 preprocessCore_1.22.0
> [17] BiocInstaller_1.10.3 pd.hugene.2.0.st_3.8.0 oligo_1.24.2 oligoClasses_1.22.0
> [21] hugene20sttranscriptcluster.db_2.12.1 org.Hs.eg.db_2.9.0 RSQLite_0.11.4 DBI_0.2-7
> [25] AnnotationDbi_1.22.6 Biobase_2.20.1 BiocGenerics_0.6.0 limma_3.16.7
>
> loaded via a namespace (and not attached):
> [1] affxparser_1.32.3 affyio_1.28.0 Biostrings_2.28.0 bit_1.1-10 codetools_0.2-8 ff_2.2-11 GenomicRanges_1.12.5
> [8] grid_3.0.1 IRanges_1.18.3 lattice_0.20-15 rpart_4.1-1 stats4_3.0.1 tools_3.0.1 zlibbioc_1.6.0
>
> --
> Sent via the guest posting facility at bioconductor.org.
>
> _______________________________________________
> Bioconductor mailing list
> Bioconductor at r-project.org
> https://stat.ethz.ch/mailman/listinfo/bioconductor
> Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
--
Laurent Gatto
- http://proteome.sysbiol.cam.ac.uk/lgatto/
Cambridge Centre for Proteomics
- http://www.bio.cam.ac.uk/proteomics
Using R/Bioconductor for proteomics data analysis
- http://lgatto.github.io/RforProteomics/
More information about the Bioconductor
mailing list