[BioC] EdgeR: coefficients for GLM for multiple groups

James W. MacDonald jmacdon at uw.edu
Thu Mar 21 19:45:44 CET 2013


Hi Capricy,

Just like limma, edgeR has a very comprehensive user's guide that you 
can consult.

library(edgeR)
edgeRUsersGuide()

Best,

Jim



On 3/21/2013 2:41 PM, capricy gao wrote:
> I am looking at my fit results from GLM of edgeR for my data:
>
> and assume that $coefficients are related to the expression levels. Just wondering how I can get the p values for those coefficients since I remember in limma, each coefficient will be accompanied by the corresponding t value and p value.
>
>
> Thanks a lot for the help.
>
> capricy
>
> ===================
>
>> design=model.matrix(~0+regroup)
>> y<- estimateGLMCommonDisp(y,design)
>> y<- estimateGLMTagwiseDisp(y,design)
>> fit<- glmFit(y,design)
>> fit
> An object of class "DGEGLM"
> $coefficients
>            regroupFR  regroupFA  regroupFM  regroupFP regroupFW  regroupMA
> GS_14929  -9.543565  -9.267612  -9.310823  -9.167299 -10.62094  -9.260763
> GS_09776 -10.304430 -10.985146 -10.644154 -10.640469 -10.59615 -10.798889
> GS_18434 -11.327664 -11.786421 -11.643292 -11.902728 -12.50470 -11.654008
> GS_08334 -10.789181 -10.271089 -10.511480 -10.375642 -10.39865 -10.836647
> GS_09550 -10.564167 -10.152571 -10.410428 -10.098825 -10.36302  -9.722892
>            regroupMM  regroupMP  regroupMW
> GS_14929  -8.516256  -8.222225  -9.495394
> GS_09776 -10.337434 -10.284703 -10.588544
> GS_18434 -11.755905 -11.662276 -11.583950
> GS_08334 -10.797529 -10.643409 -10.783104
> GS_09550 -10.650495 -10.766462  -9.880359
> 15457 more rows ...
>
> $fitted.values
>                  MP        FA       FR        FW        MA      FW.1        MM
> GS_14929 596.53153 205.75696 84.61834 31.844025 169.27178  82.62258 513.34590
> GS_09776  75.81638  36.91137 39.53083 32.643715  36.33823  84.69746  83.04882
> GS_18434  19.09812  16.54813 14.19827  4.825192  15.43876  12.51946  20.07922
> GS_08334  52.95485  75.41272 24.33895 39.775089  34.99088 103.20054  52.41066
> GS_09550  46.82022  84.90529 30.48442 41.218519 106.62251 106.94567  60.71721
>                  FP      MA.1        MW        FM       MM.1      MW.1      MP.1
> GS_14929 78.226172 123.52247 193.95899 122.61523 173.571103 194.05252 568.23926
> GS_09776 17.921685  26.51705  64.98434  32.30797  28.080239  65.01567  72.22056
> GS_18434  5.064548  11.26610  23.99487  11.88420   6.789129  24.00644  18.19234
> GS_08334 23.358730  25.53385  53.48880  36.89427  17.720948  53.51460  50.44331
> GS_09550 30.811447  77.80550 131.97315  40.81919  20.529537 132.03679  44.59963
>                FM.1      FP.1      FA.1      FR.1
> GS_14929 259.44483 324.86875 256.36216 198.47462
> GS_09776  68.36129  74.42772  45.98959  92.72063
> GS_18434  25.14609  21.03277  20.61808  33.30242
> GS_08334  78.06556  97.00745  93.96021  57.08766
> GS_09550  86.37041 127.95815 105.78744  71.50204
> 15457 more rows ...
>
> $counts
>            MP  FA  FR FW  MA FW.1  MM  FP MA.1  MW  FM MM.1 MW.1 MP.1 FM.1 FP.1
> GS_14929 221 284 170 23 267  105 209 106   52 218 158  277  170  926  185  211
> GS_09776  75  32  17 28  41   96  86  15   23  65  23   27   65   73   87   85
> GS_18434  36  22  19  8  21    6  22   7    7  27  13    6   21    2   23   15
> GS_08334  44  77  23 50  41   78  78  14   21  61  29    8   46   59   94  132
> GS_09550  82  92  45 54 105   75  95  18   79 153  41    8  111   11   86  178
>           FA.1 FR.1
> GS_14929  159    0
> GS_09776   52  143
> GS_18434   14   23
> GS_08334   92   60
> GS_09550   97   39
> 15457 more rows ...
>
> $deviance
>   GS_14929  GS_09776  GS_18434  GS_08334  GS_09550
> 19.059229  3.629342  9.509356  4.268291  8.809585
> 15457 more elements ...
>
> $df.residual
> [1] 9 9 9 9 9
> 15457 more elements ...
>
> $abundance
> [1]  -9.081235 -10.552328 -11.717230 -10.579804 -10.233947
> 15457 more elements ...
>
> $design
>    regroupFR regroupFA regroupFM regroupFP regroupFW regroupMA regroupMM
> 1         0         0         0         0         0         0         0
> 2         0         1         0         0         0         0         0
> 3         1         0         0         0         0         0         0
> 4         0         0         0         0         1         0         0
> 5         0         0         0         0         0         1         0
>    regroupMP regroupMW
> 1         1         0
> 2         0         0
> 3         0         0
> 4         0         0
> 5         0         0
> 13 more rows ...
>
> $offset
>           [,1]     [,2]    [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
> [1,] 14.61341 14.59445 13.9819 14.08233 14.39241 15.03576 14.75727 13.52703
> [2,] 14.61341 14.59445 13.9819 14.08233 14.39241 15.03576 14.75727 13.52703
> [3,] 14.61341 14.59445 13.9819 14.08233 14.39241 15.03576 14.75727 13.52703
> [4,] 14.61341 14.59445 13.9819 14.08233 14.39241 15.03576 14.75727 13.52703
> [5,] 14.61341 14.59445 13.9819 14.08233 14.39241 15.03576 14.75727 13.52703
>           [,9]    [,10]    [,11]    [,12]   [,13]    [,14]    [,15]    [,16]
> [1,] 14.07733 14.76322 14.12002 13.67291 14.7637 14.56482 14.86951 14.95085
> [2,] 14.07733 14.76322 14.12002 13.67291 14.7637 14.56482 14.86951 14.95085
> [3,] 14.07733 14.76322 14.12002 13.67291 14.7637 14.56482 14.86951 14.95085
> [4,] 14.07733 14.76322 14.12002 13.67291 14.7637 14.56482 14.86951 14.95085
> [5,] 14.07733 14.76322 14.12002 13.67291 14.7637 14.56482 14.86951 14.95085
>          [,17]    [,18]
> [1,] 14.81434 14.83441
> [2,] 14.81434 14.83441
> [3,] 14.81434 14.83441
> [4,] 14.81434 14.83441
> [5,] 14.81434 14.83441
> 15457 more rows ...
>
> $dispersion
> [1] 0.7464955 0.2734189 0.4034924 0.2832934 0.3819788
> 15457 more elements ...
>
> $method
> [1] "oneway"
>
> $samples
>     group lib.size norm.factors
> MP    MP  2220863            1
> FA    FA  2179157            1
> FR    FR  1181036            1
> FW    FW  1305802            1
> MA    MA  1780507            1
> 13 more rows ...
> 	[[alternative HTML version deleted]]
>
>
>
> _______________________________________________
> Bioconductor mailing list
> Bioconductor at r-project.org
> https://stat.ethz.ch/mailman/listinfo/bioconductor
> Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor

-- 
James W. MacDonald, M.S.
Biostatistician
University of Washington
Environmental and Occupational Health Sciences
4225 Roosevelt Way NE, # 100
Seattle WA 98105-6099



More information about the Bioconductor mailing list