[BioC] Unexpected results of differential expression analysis

Wolfgang Huber whuber at embl.de
Sun Jun 23 17:45:45 CEST 2013


Dear Laura

did you already contact the authors of that paper for a transcript of their analysis / the exact parameters, software versions, filters, etc. used?

	Best wishes
	Wolfgang

On 22 Jun 2013, at 13:06, Laura [guest] <guest at bioconductor.org> wrote:

> 
> Hello,
> 
> I am analysing the GEO dataset GSE19736 using SAM (significance analysis for microarrays), particularly the R package called samr but I am not getting the results that I was expecting.
> 
> According to the published study, which also uses this tool, there should be 1028 differentially expressed genes (554 up-regulated and 474 down-regulated). When I run the analysis on the data I get a lot more of genes that are differentially expressed. I don't know what I might be doing wrong or where the difference lays.
> 
> I am using the following code:
> #Extracting files
>> cel <- list.celfiles()
>> abatch.raw <- read.celfiles(cel)
> 
> #Processing
>> geneSummaries <- rma(abatch.raw)
> 
> #Extracting expression matrix
>> expressionmatrix <- exprs (geneSummaries)
> 
> #SAM
>> samrobj <- samr (data, resp.type="Quantitative", nperms=50, center.arrays=TRUE, assay.type="array")
>> delta=2
>> samr.plot(samrobj,delta)
>> delta.table <- samr.compute.delta.table(samrobj)
>> siggenes.table<-samr.compute.siggenes.table(samrobj,2.5, data, delta.table, min.foldchange=1.5, compute.localfdr=TRUE)
>> samr.pvalues.from.perms (samrobj$tt, samrobj$ttstar)
> 
> 
> If I understood it correctly you can know the number of differentially expressed genes this way for the upregulated:
>> siggenes.table$ngenes.up
> 
> and this way for the downregulated:
>> siggenes.table$ngenes.lo
> 
> I find there are 1598 upregulated genes and 1721 downregulated genes, and the number varies greatly depending on the value I give to delta.
> 
> I tried assesing differential expression with limma instead, in this case I found that the number of differentially expressed genes was half the expected...
> 
> Does anyone have any clue?
> Thanks!
> 
> -- output of sessionInfo(): 
> 
> R version 2.15.1 (2012-06-22)
> Platform: x86_64-pc-linux-gnu (64-bit)
> 
> locale:
> [1] LC_CTYPE=es_ES.UTF-8       LC_NUMERIC=C               LC_TIME=es_ES.UTF-8       
> [4] LC_COLLATE=es_ES.UTF-8     LC_MONETARY=es_ES.UTF-8    LC_MESSAGES=es_ES.UTF-8   
> [7] LC_PAPER=C                 LC_NAME=C                  LC_ADDRESS=C              
> [10] LC_TELEPHONE=C             LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C       
> 
> attached base packages:
> [1] compiler  splines   parallel  stats     graphics  grDevices utils     datasets  methods  
> [10] base     
> 
> other attached packages:
> [1] limma_3.14.4              pd.hugene.1.0.st.v1_3.8.0 GOstats_2.26.0           
> [4] Category_2.26.0           GSEABase_1.22.0           graph_1.38.2             
> [7] annaffy_1.32.0            KEGG.db_2.9.1             GO.db_2.9.0              
> [10] preprocessCore_1.20.0     samr_2.0                  matrixStats_0.8.1        
> [13] impute_1.34.0             pdInfoBuilder_1.22.0      affxparser_1.30.2        
> [16] pd.huex.1.0.st.v2_3.8.0   RSQLite_0.11.4            oligo_1.22.0             
> [19] oligoClasses_1.20.0       nnet_7.3-4                mgcv_1.7-18              
> [22] Matrix_1.0-6              lattice_0.20-6            KernSmooth_2.23-8        
> [25] gcrma_2.30.0              affy_1.36.1               foreign_0.8-50           
> [28] DBI_0.2-7                 cluster_1.14.2            survival_2.36-14         
> [31] rpart_3.1-54              BiocInstaller_1.8.3       annotate_1.38.0          
> [34] AnnotationDbi_1.22.6      Biobase_2.18.0            BiocGenerics_0.6.0       
> 
> loaded via a namespace (and not attached):
> [1] affyio_1.26.0         AnnotationForge_1.2.1 Biostrings_2.26.3     bit_1.1-10           
> [5] codetools_0.2-8       ff_2.2-11             foreach_1.4.1         genefilter_1.42.0    
> [9] GenomicRanges_1.10.7  grid_2.15.1           IRanges_1.16.6        iterators_1.0.6      
> [13] nlme_3.1-104          RBGL_1.36.2           R.methodsS3_1.4.2     rstudio_0.97.246     
> [17] stats4_2.15.1         tools_2.15.1          XML_3.96-1.1          xtable_1.7-1         
> [21] zlibbioc_1.4.0       
> 
> --
> Sent via the guest posting facility at bioconductor.org.
> 
> _______________________________________________
> Bioconductor mailing list
> Bioconductor at r-project.org
> https://stat.ethz.ch/mailman/listinfo/bioconductor
> Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor



More information about the Bioconductor mailing list