[BioC] Unexpected results of differential expression analysis
Wolfgang Huber
whuber at embl.de
Sun Jun 23 17:45:45 CEST 2013
Dear Laura
did you already contact the authors of that paper for a transcript of their analysis / the exact parameters, software versions, filters, etc. used?
Best wishes
Wolfgang
On 22 Jun 2013, at 13:06, Laura [guest] <guest at bioconductor.org> wrote:
>
> Hello,
>
> I am analysing the GEO dataset GSE19736 using SAM (significance analysis for microarrays), particularly the R package called samr but I am not getting the results that I was expecting.
>
> According to the published study, which also uses this tool, there should be 1028 differentially expressed genes (554 up-regulated and 474 down-regulated). When I run the analysis on the data I get a lot more of genes that are differentially expressed. I don't know what I might be doing wrong or where the difference lays.
>
> I am using the following code:
> #Extracting files
>> cel <- list.celfiles()
>> abatch.raw <- read.celfiles(cel)
>
> #Processing
>> geneSummaries <- rma(abatch.raw)
>
> #Extracting expression matrix
>> expressionmatrix <- exprs (geneSummaries)
>
> #SAM
>> samrobj <- samr (data, resp.type="Quantitative", nperms=50, center.arrays=TRUE, assay.type="array")
>> delta=2
>> samr.plot(samrobj,delta)
>> delta.table <- samr.compute.delta.table(samrobj)
>> siggenes.table<-samr.compute.siggenes.table(samrobj,2.5, data, delta.table, min.foldchange=1.5, compute.localfdr=TRUE)
>> samr.pvalues.from.perms (samrobj$tt, samrobj$ttstar)
>
>
> If I understood it correctly you can know the number of differentially expressed genes this way for the upregulated:
>> siggenes.table$ngenes.up
>
> and this way for the downregulated:
>> siggenes.table$ngenes.lo
>
> I find there are 1598 upregulated genes and 1721 downregulated genes, and the number varies greatly depending on the value I give to delta.
>
> I tried assesing differential expression with limma instead, in this case I found that the number of differentially expressed genes was half the expected...
>
> Does anyone have any clue?
> Thanks!
>
> -- output of sessionInfo():
>
> R version 2.15.1 (2012-06-22)
> Platform: x86_64-pc-linux-gnu (64-bit)
>
> locale:
> [1] LC_CTYPE=es_ES.UTF-8 LC_NUMERIC=C LC_TIME=es_ES.UTF-8
> [4] LC_COLLATE=es_ES.UTF-8 LC_MONETARY=es_ES.UTF-8 LC_MESSAGES=es_ES.UTF-8
> [7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C
> [10] LC_TELEPHONE=C LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C
>
> attached base packages:
> [1] compiler splines parallel stats graphics grDevices utils datasets methods
> [10] base
>
> other attached packages:
> [1] limma_3.14.4 pd.hugene.1.0.st.v1_3.8.0 GOstats_2.26.0
> [4] Category_2.26.0 GSEABase_1.22.0 graph_1.38.2
> [7] annaffy_1.32.0 KEGG.db_2.9.1 GO.db_2.9.0
> [10] preprocessCore_1.20.0 samr_2.0 matrixStats_0.8.1
> [13] impute_1.34.0 pdInfoBuilder_1.22.0 affxparser_1.30.2
> [16] pd.huex.1.0.st.v2_3.8.0 RSQLite_0.11.4 oligo_1.22.0
> [19] oligoClasses_1.20.0 nnet_7.3-4 mgcv_1.7-18
> [22] Matrix_1.0-6 lattice_0.20-6 KernSmooth_2.23-8
> [25] gcrma_2.30.0 affy_1.36.1 foreign_0.8-50
> [28] DBI_0.2-7 cluster_1.14.2 survival_2.36-14
> [31] rpart_3.1-54 BiocInstaller_1.8.3 annotate_1.38.0
> [34] AnnotationDbi_1.22.6 Biobase_2.18.0 BiocGenerics_0.6.0
>
> loaded via a namespace (and not attached):
> [1] affyio_1.26.0 AnnotationForge_1.2.1 Biostrings_2.26.3 bit_1.1-10
> [5] codetools_0.2-8 ff_2.2-11 foreach_1.4.1 genefilter_1.42.0
> [9] GenomicRanges_1.10.7 grid_2.15.1 IRanges_1.16.6 iterators_1.0.6
> [13] nlme_3.1-104 RBGL_1.36.2 R.methodsS3_1.4.2 rstudio_0.97.246
> [17] stats4_2.15.1 tools_2.15.1 XML_3.96-1.1 xtable_1.7-1
> [21] zlibbioc_1.4.0
>
> --
> Sent via the guest posting facility at bioconductor.org.
>
> _______________________________________________
> Bioconductor mailing list
> Bioconductor at r-project.org
> https://stat.ethz.ch/mailman/listinfo/bioconductor
> Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
More information about the Bioconductor
mailing list