[BioC] Unexpected results of differential expression analysis
Laura [guest]
guest at bioconductor.org
Sat Jun 22 13:06:25 CEST 2013
Hello,
I am analysing the GEO dataset GSE19736 using SAM (significance analysis for microarrays), particularly the R package called samr but I am not getting the results that I was expecting.
According to the published study, which also uses this tool, there should be 1028 differentially expressed genes (554 up-regulated and 474 down-regulated). When I run the analysis on the data I get a lot more of genes that are differentially expressed. I don't know what I might be doing wrong or where the difference lays.
I am using the following code:
#Extracting files
>cel <- list.celfiles()
>abatch.raw <- read.celfiles(cel)
#Processing
>geneSummaries <- rma(abatch.raw)
#Extracting expression matrix
>expressionmatrix <- exprs (geneSummaries)
#SAM
>samrobj <- samr (data, resp.type="Quantitative", nperms=50, center.arrays=TRUE, assay.type="array")
>delta=2
>samr.plot(samrobj,delta)
>delta.table <- samr.compute.delta.table(samrobj)
>siggenes.table<-samr.compute.siggenes.table(samrobj,2.5, data, delta.table, min.foldchange=1.5, compute.localfdr=TRUE)
>samr.pvalues.from.perms (samrobj$tt, samrobj$ttstar)
If I understood it correctly you can know the number of differentially expressed genes this way for the upregulated:
> siggenes.table$ngenes.up
and this way for the downregulated:
> siggenes.table$ngenes.lo
I find there are 1598 upregulated genes and 1721 downregulated genes, and the number varies greatly depending on the value I give to delta.
I tried assesing differential expression with limma instead, in this case I found that the number of differentially expressed genes was half the expected...
Does anyone have any clue?
Thanks!
-- output of sessionInfo():
R version 2.15.1 (2012-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=es_ES.UTF-8 LC_NUMERIC=C LC_TIME=es_ES.UTF-8
[4] LC_COLLATE=es_ES.UTF-8 LC_MONETARY=es_ES.UTF-8 LC_MESSAGES=es_ES.UTF-8
[7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] compiler splines parallel stats graphics grDevices utils datasets methods
[10] base
other attached packages:
[1] limma_3.14.4 pd.hugene.1.0.st.v1_3.8.0 GOstats_2.26.0
[4] Category_2.26.0 GSEABase_1.22.0 graph_1.38.2
[7] annaffy_1.32.0 KEGG.db_2.9.1 GO.db_2.9.0
[10] preprocessCore_1.20.0 samr_2.0 matrixStats_0.8.1
[13] impute_1.34.0 pdInfoBuilder_1.22.0 affxparser_1.30.2
[16] pd.huex.1.0.st.v2_3.8.0 RSQLite_0.11.4 oligo_1.22.0
[19] oligoClasses_1.20.0 nnet_7.3-4 mgcv_1.7-18
[22] Matrix_1.0-6 lattice_0.20-6 KernSmooth_2.23-8
[25] gcrma_2.30.0 affy_1.36.1 foreign_0.8-50
[28] DBI_0.2-7 cluster_1.14.2 survival_2.36-14
[31] rpart_3.1-54 BiocInstaller_1.8.3 annotate_1.38.0
[34] AnnotationDbi_1.22.6 Biobase_2.18.0 BiocGenerics_0.6.0
loaded via a namespace (and not attached):
[1] affyio_1.26.0 AnnotationForge_1.2.1 Biostrings_2.26.3 bit_1.1-10
[5] codetools_0.2-8 ff_2.2-11 foreach_1.4.1 genefilter_1.42.0
[9] GenomicRanges_1.10.7 grid_2.15.1 IRanges_1.16.6 iterators_1.0.6
[13] nlme_3.1-104 RBGL_1.36.2 R.methodsS3_1.4.2 rstudio_0.97.246
[17] stats4_2.15.1 tools_2.15.1 XML_3.96-1.1 xtable_1.7-1
[21] zlibbioc_1.4.0
--
Sent via the guest posting facility at bioconductor.org.
More information about the Bioconductor
mailing list