[BioC] flowStats quadrantGate and rangeGate Question
Chao-Jen Wong
cwon2 at fhcrc.org
Wed Jun 23 19:36:38 CEST 2010
Aric and I have exchanged some conversation about this problem.
Consequently I think it is a good idea to modify the 'quadrantGate' and
'rangeGate' functions such that the minor, yet significant,
sub-population below a specified reference line can be ignored when
calculating the separator between the positive and negative. This
modification is already included in flowStats V 1.7.2 or newer. One can
find it in the BioC-devel branch. Thanks again for Aric's comments.
Chao-Jen
On 06/03/10 13:46, Aric Gregson wrote:
> Hello,
>
> I am trying out the quadrant and rangeGate methods in flowStats with a small
> sample of data. It seems that they do not play well with asinh transformed
> data when there is a small, but significant, population below zero. I have
> tuned the adjustable parameters sd, alpha and borderQuant as much as
> possible, but with less than ideal results. What I am looking for I suppose
> is a way to tell the algorithm to ignore points below 0 when calculating the
> gates.
>
> For example, in the fluorochrome channels there are two distinct populations
> that have values above zero, and there is a small population with values
> below zero. For determining positive and negative gates, only the two
> populations that have values above zero should be considered. The values
> below zero should be lumped in with the non-zero but still negative numbers.
> Just wondering if there is a way to do this without having to manually
> program the gates.
>
> Thanks, Aric
>
> wf <- workFlow(fs, name="2009_03_05 Asinh Workflow")
> # remove boundry events before transformation as transform SSC
> boundaryfilter <- boundaryFilter(filterId = "boundaryfilter",
> x = c("FSC.A", "SSC.A"))
> add(wf, boundaryfilter)
> singletfilter = polygonGate(`FSC.A` =
> c(10000,13000,20000,40000,60000,80000,100000,160000,200000,263000,263000,
> 200000,160000,100000,80000,60000,40000,20000,14000,8000),
> `FSC.H` =
> c(5000,5000,10000,22000,34000,50000,65000,115000,150000,200000,220000,170000,130000,78000,62000,45000,30000,15000,10000,5000),
> filterId="Singlet")
> add(wf, singletfilter, parent="boundaryfilter+")
> asinhtf <- transformList(colnames(fs)[4:19],
> asinh,
> transformationId="asinh")
> add(wf, asinhtf, parent="Singlet+")
> lymphfilter <- lymphGate(Data(wf[["asinh"]]), channels=c("FSC.A", "SSC.A"),
> preselection="APC.H7.A", filterId="Lymphs", eval=FALSE, scale=2)
> add(wf, lymphfilter$n2gate, parent="asinh")
> pars <- colnames(Data(wf[["base view"]]))[c(10,11,12,13,18,19)]
> norm <- normalization(normFun = function(x, parameters, ...)
> warpSet(x, parameters, ...),
> parameters = pars,
> normalizationId= "Warping")
> add(wf, norm, parent="Lymphs+")
> ## absolute=T & borderQuant=0.9 help with CD3, but not CD4
> qgate <- quadrantGate(Data(wf[["Warping"]]),
> stains=c("AmCyan.A", "APC.H7.A"),
> plot=FALSE,
> filterId="CD3CD4",
> absolute=TRUE,
> borderQuant=0.8,
> alpha=0.9,
> sd=0.1)
> add(wf, qgate, parent="Warping")
> ## can't get much better than this without removing negative numbers
> qgateLive <- quadrantGate(Data(wf[["Warping"]]),
> stains=c("Indo.1..Violet..A", "APC.H7.A"),
> plot=TRUE,
> filterId="LiveCD4",
> absolute=TRUE,
> borderQuant=1, #0 is wrong direction
> alpha=1,#0.9
> sd=0)
>
>
>> sessionInfo()
>>
> R version 2.11.0 (2010-04-22)
> amd64-portbld-freebsd8.0
>
> locale:
> [1] C
>
> attached base packages:
> [1] splines tools stats graphics grDevices utils datasets
> [8] methods base
>
> other attached packages:
> [1] flowStats_1.6.0 cluster_1.12.3 fda_2.2.1
> [4] zoo_1.6-3 flowQ_1.8.0 latticeExtra_0.6-11
> [7] RColorBrewer_1.0-2 parody_1.6.0 bioDist_1.20.0
> [10] KernSmooth_2.23-3 mvoutlier_1.4 outliers_0.13-2
> [13] flowViz_1.12.0 lattice_0.18-5 flowCore_1.14.1
> [16] rrcov_1.0-00 pcaPP_1.8-1 mvtnorm_0.9-9
> [19] robustbase_0.5-0-1 Biobase_2.8.0 fortunes_1.3-7
>
> loaded via a namespace (and not attached):
> [1] AnnotationDbi_1.10.1 DBI_0.2-5 MASS_7.3-5
> [4] RSQLite_0.9-0 annotate_1.26.0 feature_1.2.4
> [7] geneplotter_1.26.0 graph_1.26.0 grid_2.11.0
> [10] ks_1.6.12 stats4_2.11.0 xtable_1.5-6
>
> _______________________________________________
> Bioconductor mailing list
> Bioconductor at stat.math.ethz.ch
> https://stat.ethz.ch/mailman/listinfo/bioconductor
> Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
>
--
Chao-Jen Wong
Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Avenue N., M1-B514
PO Box 19024
Seattle, WA 98109
206.667.4485
cwon2 at fhcrc.org
More information about the Bioconductor
mailing list