[BioC] AgiMicroRna - FilterMicroRna question

Neel Aluru naluru at whoi.edu
Tue Jun 1 19:33:59 CEST 2010


Thanks, Martin. I have contacted Pedro today and hopefully he will get a chance to see my mail. In the mean time I will follow your suggestions.

Thanks once again.

Neel

On Jun 1, 2010, at 1:31 PM, Martin Morgan wrote:

> On 06/01/2010 06:43 AM, Neel Aluru wrote:
>> Hello,
>> 
>> I have asked this question before and haven't heard from anyone. Sorry for reposting it as I spent lot of time on it and still cannot figure it out. I need to filter the data before statistical analysis so as to remove the genes that are not detected. 
>> 
>>> ddPROC = filterMicroRna(ddTGS.rma, dd.micro, control = TRUE, 
>> IsGeneDetected = TRUE, wellaboveNEG = FALSE, limIsGeneDetected = 50, 
>> limNEG = 25, makePLOT = FALSE, targets.micro, verbose = TRUE)
>> FILTERING PROBES BY FLAGS
>> 
>> 
>> FILTERING BY ControlType
>> Error in matrix(ddFILT$other$gIsGeneDetected, nrow = dim(ddFILT)[1], 
>> ncol = dim(ddFILT)[2]) :
>>  attempt to set an attribute on NULL
>> 
>> 
>> I checked my data files to see if the required column (IsGeneDetected) is present and it is there. But, for some reason it is not detecting and I do not understand the error message I am getting. If anyone can explain the error message to me that would be great. I have posted the session info below. 
> 
> Hi Neel -- I can't help with specifics, but
> 
>> matrix(NULL)
> Error in matrix(NULL) : attempt to set an attribute on NULL
> 
> so the proximate cause of the error message is likely that
> ddFILT$other$gIsGeneDetected is equal to NULL, e.g., because it doesn't
> exist. You can investigate this by inspecting the code, e.g.,
> 
>> options(error=browser())
> 
> and then re-running your code. See ?browser; when done use
> options(error=NULL). Before that I'd revisit the help page for this
> function and double-check that you are providing appropriate arguments.
> 
> I've added
> 
>> packageDescription('AgiMicroRna')$Maintainer
> [1] "Pedro Lopez-Romero <plopez at cnic.es>"
> 
> to the email, as Pedro in the best position to help you.
> 
> Martin
> 
>> Thank you very much,
>> 
>> Neel
>> 
>> 
>> 
>> 
>> Session Info
>> 
>>> library("AgiMicroRna")
>>> targets.micro=readTargets(infile="targets.txt", verbose=TRUE)
>> 
>> Target File
>>               FileName Treatment GErep Subject
>> 36_DMSO_1 36_DMSO_1.txt    36DMSO     1       1
>> 36_DMSO_2 36_DMSO_2.txt    36DMSO     1       2
>> 36_DMSO_3 36_DMSO_3.txt    36DMSO     1       3
>> 36_TCDD_1 36_TCDD_1.txt    36TCDD     2       1
>> 36_TCDD_2 36_TCDD_2.txt    36TCDD     2       2
>> 36_TCDD_3 36_TCDD_3.txt    36TCDD     2       3
>> 60_DMSO_1 60_DMSO_1.txt    60DMSO     3       1
>> 60_DMSO_2 60_DMSO_2.txt    60DMSO     3       2
>> 60_DMSO_3 60_DMSO_3.txt    60DMSO     3       3
>> 60_TCDD_1 60_TCDD_1.txt    60TCDD     4       1
>> 60_TCDD_2 60_TCDD_2.txt    60TCDD     4       2
>> 60_TCDD_3 60_TCDD_3.txt    60TCDD     4       3
>> 
>>> dd.micro=read.maimages(targets.micro$FileName, 
>> columns=list(R="gTotalGeneSignal",G= 
>> "gTotalProbeSignal",Rb="gMeanSignal", Gb="gProcessedSignal"), 
>> annotation=c("ProbeUID","ControlType","ProbeName","GeneName","SystematicName", 
>> "sequence", "accessions","probe_mappings", 
>> "gIsGeneDetected","gIsSaturated","gIsFeatNonUnifOL", 
>> "gIsFeatPopnOL","chr_coord","gBGMedianSignal","gBGUsed"))
>> Read 36_DMSO_1.txt
>> Read 36_DMSO_2.txt
>> Read 36_DMSO_3.txt
>> Read 36_TCDD_1.txt
>> Read 36_TCDD_2.txt
>> Read 36_TCDD_3.txt
>> Read 60_DMSO_1.txt
>> Read 60_DMSO_2.txt
>> Read 60_DMSO_3.txt
>> Read 60_TCDD_1.txt
>> Read 60_TCDD_2.txt
>> Read 60_TCDD_3.txt
>>> cvArray(dd.micro, "MeanSignal", targets.micro, verbose=TRUE)
>> Foreground: MeanSignal
>> 
>>        FILTERING BY ControlType FLAG
>> 
>> RAW DATA:                       5335
>> PROBES without CONTROLS:        4620
>> ----------------------------------
>>  (Non-CTRL) Unique Probe:  490
>>  (Non-CTRL) Unique Genes:  231
>> ----------------------------------
>> DISTRIBUTION OF REPLICATED NonControl Probes
>> reps
>>  5   6   7  10
>> 20  18  36 416
>> ------------------------------------------------------
>> Replication at Probe level- MEDIAN  CV
>> 36_DMSO_1 36_DMSO_2 36_DMSO_3 36_TCDD_1 36_TCDD_2 36_TCDD_3 60_DMSO_1 
>> 60_DMSO_2 60_DMSO_3
>>    0.078     0.081     0.091     0.081     0.077     0.067 
>> 0.076     0.066     0.103
>> 60_TCDD_1 60_TCDD_2 60_TCDD_3
>>    0.073     0.086     0.069
>> ------------------------------------------------------
>> DISTRIBUTION OF REPLICATED Noncontrol Genes
>> reps
>> 20
>> 231
>> ------------------------------------------------------
>>> ddTGS.rma = rmaMicroRna(dd.micro, normalize=TRUE, background=FALSE)
>> Calculating Expression
>>> ddPROC = filterMicroRna(ddTGS.rma, dd.micro, control = TRUE, 
>> IsGeneDetected = TRUE, wellaboveNEG = FALSE, limIsGeneDetected = 50, 
>> limNEG = 25, makePLOT = FALSE, targets.micro, verbose = TRUE)
>> FILTERING PROBES BY FLAGS
>> 
>> 
>> FILTERING BY ControlType
>> Error in matrix(ddFILT$other$gIsGeneDetected, nrow = dim(ddFILT)[1], 
>> ncol = dim(ddFILT)[2]) :
>>  attempt to set an attribute on NULL
>> 
>>> MMM = ddTGS.rma$Rb
>>> colnames(MMM) = colnames(dd.micro$Rb)
>>> maintitle='TGS.rma'
>>> colorfill='blue'
>>> ddaux=ddTGS.rma
>>> ddaux$G=MMM
>>> mvaMicroRna(ddaux, maintitle, verbose=TRUE)
>> 
>> ------------------------------------------------------
>> mvaMicroRna info:
>> FEATURES :      231
>> POSITIVE CTRL:          12
>> NEGATIVE CTRL:          7
>> STRUCTURAL:             3
>>> rm(ddaux)
>>> RleMicroRna(MMM,"RLE TGS.rma", colorfill)
>>> boxplotMicroRna(MMM, maintitle, colorfill)
>>> plotDensityMicroRna(MMM, maintitle)
>>> spottypes = readSpotTypes()
>>> ddTGS.rma$genes$Status = controlStatus(spottypes, ddTGS.rma)
>> Matching patterns for: ProbeName GeneName
>> Found 231 gene
>> Found 1 BLANK
>> Found 1 Blank
>> Found 0 blank
>> Found 6 positive
>> Found 0 negative
>> Found 0 flag1
>> Found 0 flag2
>> Found 6 flag3
>> Found 5 flag4
>> Found 1 flag5
>> Setting attributes: values
>>> i = ddTGS.rma$genes$Status == "gene"
>>> esetPROC = esetMicroRna(ddTGS.rma[i,], targets.micro, 
>> makePLOT=TRUE, verbose = TRUE)
>> outPUT DATA: esetPROC
>> Features  Samples
>>     231       12
>>> design=model.matrix(~-1+treatment)
>>> print(design)
>>   treatment36DMSO treatment36TCDD treatment60DMSO treatment60TCDD
>> 1                1               0               0               0
>> 2                1               0               0               0
>> 3                1               0               0               0
>> 4                0               1               0               0
>> 5                0               1               0               0
>> 6                0               1               0               0
>> 7                0               0               1               0
>> 8                0               0               1               0
>> 9                0               0               1               0
>> 10               0               0               0               1
>> 11               0               0               0               1
>> 12               0               0               0               1
>> attr(,"assign")
>> [1] 1 1 1 1
>> attr(,"contrasts")
>> attr(,"contrasts")$treatment
>> [1] "contr.treatment"
>> 
>>> fit=lmFit(esetPROC, design)
>>> cont.matrix = makeContrasts(treatment36TCDDvstreatment36DMSO = 
>> treatment36TCDD-treatment36DMSO, treatment60TCDDvstreatment60DMSO = 
>> treatment60TCDD-treatment60DMSO,treatment60TCDDvstreatment36TCDD = 
>> treatment60TCDD-treatment36TCDD, treatment60DMSOvstreatment36DMSO = 
>> treatment60DMSO-treatment36DMSO, levels=design)
>>> print(cont.matrix)
>>                 Contrasts
>> Levels            treatment36TCDDvstreatment36DMSO 
>> treatment60TCDDvstreatment60DMSO
>>  treatment36DMSO                               -1 
>>             0
>>  treatment36TCDD                                1 
>>             0
>>  treatment60DMSO                                0 
>>            -1
>>  treatment60TCDD                                0 
>>             1
>>                 Contrasts
>> Levels            treatment60TCDDvstreatment36TCDD 
>> treatment60DMSOvstreatment36DMSO
>>  treatment36DMSO                                0 
>>            -1
>>  treatment36TCDD                               -1 
>>             0
>>  treatment60DMSO                                0 
>>             1
>>  treatment60TCDD                                1 
>>             0
>>> fit2 = contrasts.fit(fit,cont.matrix)
>>> print(head(fit2$coeff))
>>            Contrasts
>>             treatment36TCDDvstreatment36DMSO treatment60TCDDvstreatment60DMSO
>>  dre-let-7a                      0.038640984                      0.013333873
>>  dre-let-7b                      0.074038749                     -0.031608286
>>  dre-let-7c                      0.026244357                     -0.005682488
>>  dre-let-7d                      0.067340768                      0.055567054
>>  dre-let-7e                      0.004569306                      0.136348664
>>  dre-let-7f                      0.042880109                      0.085568058
>>            Contrasts
>>             treatment60TCDDvstreatment36TCDD treatment60DMSOvstreatment36DMSO
>>  dre-let-7a                        1.7358343                       1.76114142
>>  dre-let-7b                        0.1366920                       0.24233899
>>  dre-let-7c                        0.9920976                       1.02402449
>>  dre-let-7d                        0.8098432                       0.82161694
>>  dre-let-7e                        0.1186829                      -0.01309647
>>  dre-let-7f                        1.1245878                       1.08189990
>>> fit2 = eBayes(fit2)
>>> fit2 = basicLimma(esetPROC, design, cont.matrix, verbose = TRUE)
>> DATA
>> Features  Samples
>>     231       12
>> 
>>> DE = getDecideTests(fit2, DEmethod = "separate", MTestmethod = 
>> "BH", PVcut = 0.1, verbose = TRUE)
>> 
>> ------------------------------------------------------
>> Method for Selecting DEGs: separate
>> Multiple Testing  method:  BH - pval 0.1
>> 
>>     treatment36TCDDvstreatment36DMSO treatment60TCDDvstreatment60DMSO
>> UP                                  0                                5
>> DOWN                                0                                1
>>     treatment60TCDDvstreatment36TCDD treatment60DMSOvstreatment36DMSO
>> UP                                 56                               51
>> DOWN                               80                               91
>> ------------------------------------------------------
>>> pvalHistogram(fit2, DE, PVcut = 0.1, DEmethod ="separate", 
>> MTestmethod="BH",cont.matrix, verbose= TRUE)
>>> significantMicroRna(esetPROC, ddTGS.rma, targets.micro, fit2, 
>> cont.matrix, DE, DEmethod = "separate", MTestmethod= "BH", PVcut = 
>> 0.1, Mcut=0, verbose=TRUE)
>> ------------------------------------------------------
>> CONTRAST:  1  -  treatment36TCDDvstreatment36DMSO
>> 
>> Error in data.frame(PROBE_ID, as.character(GENE_ID), 
>> as.character(chr_coord),  :
>>  arguments imply differing number of rows: 231, 0
>> 
>> 
>> 
>> 
>> Neel Aluru
>> Postdoctoral Scholar
>> Biology Department
>> Woods Hole Oceanographic Institution
>> Woods Hole, MA 02543
>> USA
>> 508-289-3607
>> 
>> _______________________________________________
>> Bioconductor mailing list
>> Bioconductor at stat.math.ethz.ch
>> https://stat.ethz.ch/mailman/listinfo/bioconductor
>> Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
> 
> 
> -- 
> Martin Morgan
> Computational Biology / Fred Hutchinson Cancer Research Center
> 1100 Fairview Ave. N.
> PO Box 19024 Seattle, WA 98109
> 
> Location: Arnold Building M1 B861
> Phone: (206) 667-2793
> 

Neel Aluru
Postdoctoral Scholar
Biology Department
Woods Hole Oceanographic Institution
Woods Hole, MA 02543
USA
508-289-3607



More information about the Bioconductor mailing list