[BioC] Agilent G4112A Arrays

Chuming Chen chumingchen at gmail.com
Thu Jan 28 14:44:08 CET 2010


Prashantha and everybody comments on my question:

Thank you very much!

Chuming


Prashantha Hebbar wrote:
> Hi Chuming,
>
> I have over looked your previous mail. It seems, there is nothing 
> wrong. So, better to follow Wolfgang and Naomi suggestions.
>
> Regards,
> Prashantha
>
> Prashantha Hebbar Kiradi,
> Dept. of Biotechnology,
> Manipal Life Sciences Center,
> Manipal University,
> Manipal, India
> Email:prashantha.hebbar at manipal.edu
>
>
> --- On *Thu, 1/28/10, Chuming Chen /<chumingchen at gmail.com>/* wrote:
>
>
>     From: Chuming Chen <chumingchen at gmail.com>
>     Subject: Re: [BioC] Agilent G4112A Arrays
>     To: "Prashantha Hebbar" <prashantha.hebbar at yahoo.com>
>     Cc: bioconductor at stat.math.ethz.ch
>     Date: Thursday, January 28, 2010, 4:50 AM
>
>     Prashantha and all,
>
>     Here is the sessional information regarding my analysis of this
>     data set.
>
>     Can you point out what I might do wrong?
>
>     Thanks,
>
>     Chuming
>
>     > library(limma)
>     >
>     > targets <- readTargets("Targets.txt")
>     > targets
>     SlideNumber   Name                            FileName Cy3 Cy5
>     1           1 B1vsT1 US23502303_251239134396_S02_44k.txt  B1  T1
>     2           2 B2vsT2 US23502303_251239134397_S01_44k.txt  B2  T2
>     3           3 B3vsT3 US23502303_251239134398_S01_44k.txt  B3  T3
>     4           4 B4vsT4 US23502303_251239134399_S01_44k.txt  B4  T4
>     5           5 B5vsT5 US23502303_251239134400_S01_44k.txt  B5  T5
>     >
>     > RG <- read.maimages(targets, source="agilent")
>     Read US23502303_251239134396_S02_44k.txt
>     Read US23502303_251239134397_S01_44k.txt
>     Read US23502303_251239134398_S01_44k.txt
>     Read US23502303_251239134399_S01_44k.txt
>     Read US23502303_251239134400_S01_44k.txt
>     >
>     > RG <- backgroundCorrect(RG, method="normexp", offset=50)
>     Green channel
>     Corrected array 1
>     Corrected array 2
>     Corrected array 3
>     Corrected array 4
>     Corrected array 5
>     Red channel
>     Corrected array 1
>     Corrected array 2
>     Corrected array 3
>     Corrected array 4
>     Corrected array 5
>     >
>     > plotDensities(RG)
>     >
>     > MA <- normalizeBetweenArrays(RG,method="vsn")
>     Loading required package: vsn
>     Loading required package: Biobase
>
>     Welcome to Bioconductor
>
>     Vignettes contain introductory material. To view, type
>     'openVignette()'. To cite Bioconductor, see
>     'citation("Biobase")' and for packages 'citation(pkgname)'.
>
>     vsn2: 43931 x 10 matrix (1 stratum). Please use 'meanSdPlot' to
>     verify the fit.
>     >
>     > plotDensities(MA)
>     >
>     > f<-factor(targets$Name)
>     > design<-model.matrix(~0+f)
>     > design
>     fB1vsT1 fB2vsT2 fB3vsT3 fB4vsT4 fB5vsT5
>     1       1       0       0       0       0
>     2       0       1       0       0       0
>     3       0       0       1       0       0
>     4       0       0       0       1       0
>     5       0       0       0       0       1
>     attr(,"assign")
>     [1] 1 1 1 1 1
>     attr(,"contrasts")
>     attr(,"contrasts")$f
>     [1] "contr.treatment"
>
>     > colnames(design) <- levels(f)
>     > design
>     B1vsT1 B2vsT2 B3vsT3 B4vsT4 B5vsT5
>     1      1      0      0      0      0
>     2      0      1      0      0      0
>     3      0      0      1      0      0
>     4      0      0      0      1      0
>     5      0      0      0      0      1
>     attr(,"assign")
>     [1] 1 1 1 1 1
>     attr(,"contrasts")
>     attr(,"contrasts")$f
>     [1] "contr.treatment"
>
>     >
>     > fit<-lmFit(MA, design)
>     > contrasts.matrix <- makeContrasts(B1vsT1,B2vsT2, B3vsT3, B4vsT4,
>     B5vsT5, levels=design)
>     >
>     > fit2 <- contrasts.fit(fit, contrasts.matrix)
>     > fit2 <- eBayes(fit2)
>     Error in ebayes(fit = fit, proportion = proportion, stdev.coef.lim
>     = stdev.coef.lim) :
>     No residual degrees of freedom in linear model fits
>     >
>     > toptable(fit2)
>     Error in ebayes(fit, ...) :
>     No residual degrees of freedom in linear model fits
>     >
>
>
>     Prashantha Hebbar wrote:
>     > Hi Chuming,
>     >  As per your experimental information, you have replicates.
>     Because, you have samples from same tissue with 2 different region
>     across all patients.  So, you should be able to fit linear model.
>     What I guess, there is something wrong in your analysis steps. So,
>     better to send sessional information to list.
>     >  Regards,
>     > Prashantha
>     >
>     > Prashantha Hebbar Kiradi,
>     > Dept. of Biotechnology,
>     > Manipal Life Sciences Center,
>     > Manipal University,
>     > Manipal, India
>     > Email:prashantha.hebbar at manipal.edu
>     >
>     > --- On *Mon, 1/25/10, Wolfgang Huber /<whuber at embl.de>/* wrote:
>     >
>     >
>     >     From: Wolfgang Huber <whuber at embl.de>
>     >     Subject: Re: [BioC] Agilent G4112A Arrays
>     >     To: "Naomi Altman" <naomi at stat.psu.edu>
>     >     Cc: "Chuming Chen" <chumingchen at gmail.com>, "Prashantha Hebbar"
>     >     <prashantha.hebbar at yahoo.com>, bioconductor at stat.math.ethz.ch
>     >     Date: Monday, January 25, 2010, 8:06 PM
>     >
>     >     Hi Chuming
>     >
>     >     if you want to work with the approximation that M-values have
>     >     equal variances, then preprocessing the data with a method that
>     >     provides variance stabilisation (e.g. vsn) will likely be
>     useful.
>     >
>     >     Furthermore, it might be useful to discard a fraction of genes
>     >     with low A-values, since they are more likely to be either not
>     >     expressed, or so weakly expressed that you would find it more
>     >     difficult to validate them.
>     >
>     >         Best wishes
>     >         Wolfgang
>     >
>     >     Naomi Altman wrote:
>     >     > The more data one has, the fewer assumptions one needs. 
>     In the
>     >     absence of replication, you cannot get p-values without very
>     >     strong assumptions.  e.g. you could assume that the vast
>     majority
>     >     of the genes do not differentially express, that their M-values
>     >     have equal variance and that the M-values are normally
>     >     distributed.  Then you could use e.g. the IQR of the M-values to
>     >     estimate the sd and use this to pick a fold cut-off for DE.  You
>     >     have no reasonable way to estimate FDR with this approach,
>     but it
>     >     might be slightly better than using 2-fold - or then again, it
>     >     might not.  Without replication, there is no way to know.
>     >     >
>     >     > Regards,
>     >     > Naomi Altman
>     >     >
>     >     >
>     >     > At 08:53 AM 1/25/2010, Chuming Chen wrote:
>     >     >> Hi Prashantha,
>     >     >>
>     >     >> Thank you for your suggestion. My target file is as below.
>     >     Although I couldn't fit a linear model, I still wonder whether I
>     >     can do some statistic on M (log ratio) values and use the
>     p-value
>     >     to get the differentially expressed genes.
>     >     >>
>     >     >> SlideNumber    FileName    Cy3    Cy5
>     >     >> 1    B1vsT1.txt    B1    T1
>     >     >> 2    B2vsT2.txt    B2    T2
>     >     >> 3    B3vsT3.txt    B3    T3
>     >     >> 4    B4vsT4.txt    B4    T4
>     >     >> 5    B5vsT5.txt    B5    T5
>     >     >>
>     >     >> Chuming
>     >     >>
>     >     >>
>     >     >> Prashantha Hebbar wrote:
>     >     >>> Dear Chen,
>     >     >>>
>     >     >>> You need not to look for any other packages. Since, you
>     do not
>     >     have any replicates, do not fit linear model, instead just do
>     >     normalization with in arrays and look at the M (log ratio)
>     values.
>     >     >>>
>     >     >>> Regards,
>     >     >>>
>     >     >>> Prashantha Hebbar Kiradi,
>     >     >>> Dept. of Biotechnology,
>     >     >>> Manipal Life Sciences Center,
>     >     >>> Manipal University,
>     >     >>> Manipal, India
>     >     >>>
>     >     >>>
>     >     >>> --- On *Mon, 1/25/10, Chuming Chen /<chumingchen at gmail.com
>     > 
>        <http://us.mc1101.mail.yahoo.com/mc/compose?to=chumingchen@gmail.com>>/*
>     >     wrote:
>     >     >>>
>     >     >>>
>     >     >>>     From: Chuming Chen <chumingchen at gmail.com
>     > 
>        <http://us.mc1101.mail.yahoo.com/mc/compose?to=chumingchen@gmail.com>>
>     >     >>>     Subject: [BioC] Agilent G4112A Arrays
>     >     >>>     To: bioconductor at stat.math.ethz.ch
>     > 
>        <http://us.mc1101.mail.yahoo.com/mc/compose?to=bioconductor@stat.math.ethz.ch>
>     >     >>>     Date: Monday, January 25, 2010, 6:32 AM
>     >     >>>
>     >     >>>     Dear All,
>     >     >>>
>     >     >>>     I am trying to find out the differentially expressed
>     genes
>     >     from
>     >     >>>     some Agilent Human Whole Genome (G4112A) Arrays data.
>     >     >>>
>     >     >>>     I have tried LIMMA package, but LIMMA gave the error
>     >     message "no
>     >     >>>     residual degrees of freedom in linear model fits" and
>     >     stopped. My
>     >     >>>     guess is that my data has no replicates in the
>     experiment.
>     >     >>>
>     >     >>>     Is there any other packages I can use to find
>     differentially
>     >     >>>     expressed genes which does not require replicates in the
>     >     experiment?
>     >     >>>
>     >     >>>     Thanks for your help.
>     >     >>>
>     >     >>>     Chuming
>     >     >>>
>     >     >>>     _______________________________________________
>     >     >>>     Bioconductor mailing list
>     >     >>>     Bioconductor at stat.math.ethz.ch
>     > 
>        <http://us.mc1101.mail.yahoo.com/mc/compose?to=Bioconductor@stat.math.ethz.ch>
>     >     >>>     </mc/compose?to=Bioconductor at stat.math.ethz.ch
>     > 
>        <http://us.mc1101.mail.yahoo.com/mc/compose?to=Bioconductor@stat.math.ethz.ch>>
>     >     >>>     https://stat.ethz.ch/mailman/listinfo/bioconductor
>     >     >>>     Search the archives:
>     >     >>>       
>     http://news.gmane.org/gmane.science.biology.informatics.conductor
>     >     >>>
>     >     >>
>     >     >> _______________________________________________
>     >     >> Bioconductor mailing list
>     >     >> Bioconductor at stat.math.ethz.ch
>     > 
>        <http://us.mc1101.mail.yahoo.com/mc/compose?to=Bioconductor@stat.math.ethz.ch>
>     >     >> https://stat.ethz.ch/mailman/listinfo/bioconductor
>     >     >> Search the archives:
>     > 
>        http://news.gmane.org/gmane.science.biology.informatics.conductor
>     > 
>        <http://news..gmane.org/gmane.science.biology.informatics.conductor>
>     >     >
>     >     > Naomi S. Altman                               
>     814-865-3791 (voice)
>     >     > Associate Professor
>     >     > Dept. of Statistics                             
>     814-863-7114 (fax)
>     >     > Penn State University                         814-865-1348
>     >     (Statistics)
>     >     > University Park, PA 16802-2111
>     >     >
>     >     > _______________________________________________
>     >     > Bioconductor mailing list
>     >     > Bioconductor at stat.math.ethz.ch
>     > 
>        <http://us.mc1101.mail.yahoo.com/mc/compose?to=Bioconductor@stat.math.ethz.ch>
>     >     > https://stat.ethz.ch/mailman/listinfo/bioconductor
>     >     > Search the archives:
>     > 
>        http://news.gmane.org/gmane.science.biology..informatics.conductor
>     > 
>        <http://news.gmane.org/gmane.science.biology.informatics.conductor>
>     >
>     >     --     Best wishes
>     >          Wolfgang
>     >
>     >
>     >     --
>     >     Wolfgang Huber
>     >     EMBL
>     >     http://www.embl.de/research/units/genome_biology/huber/contact
>     >
>     >
>     >
>
>



More information about the Bioconductor mailing list