[BioC] maping SNPs

Hervé Pagès hpages at fhcrc.org
Mon Dec 6 05:43:08 CET 2010


Hi Simon,

On 12/03/2010 10:17 AM, Simon Noël wrote:
>
>     Hi,
>
>
>
>     I have a really big list of SNPs names like :
>
>
>
>     SNPNAME
>
>     rs7547453
>
>     rs2840542
>
>     rs1999527
>
>     rs4648545
>
>     rs10915459
>
>     rs16838750
>
>     rs12128230
>
>     ...
>
>
>
>     I woudlike to map them to their official gene symbol.  What the best way to
>     procede?

Those ids look like RefSNP ids. AFAIK dbSNP doesn't provide mappings
from SNPs to genes and I don't think we have this kind of mappings
either in our collection of annotations (*.db packages).

But if your SNPs are Human then you can do the mapping yourself by
using a SNPlocs.Hsapies.dbSNP.* package and the GenomicFeatures
packages.

The latest SNPlocs.Hsapies.dbSNP.* package is
SNPlocs.Hsapiens.dbSNP.20101109 (dbSNP Build 132): it contains
SNP locations relative to the GRCh37 genome:

 > library(SNPlocs.Hsapiens.dbSNP.20101109)
 > getSNPcount()
     ch1     ch2     ch3     ch4     ch5     ch6     ch7     ch8     ch9 
    ch10
1849438 1936836 1613418 1613633 1453710 1446827 1335745 1243129  995075 
1158707
    ch11    ch12    ch13    ch14    ch15    ch16    ch17    ch18    ch19 
    ch20
1147722 1105364  815729  740129  657719  757926  641905  645646  520666 
  586708
    ch21    ch22     chX     chY    chMT
  338254  331060  529608   67438     624

Note that it doesn't contain *all* SNPs from dbSNP Build 132:
only a subset of "clean" SNPs (see ?SNPlocs.Hsapiens.dbSNP.20101109
for the details).

 > ch22snps <- getSNPlocs("ch22")
 > ch22snps[1:5, ]
   RefSNP_id alleles_as_ambig      loc
1  56342815                K 16050353
2   7288968                S 16050994
3   6518357                M 16051107
4   7292503                R 16051209
5   6518368                Y 16051241

Note that the rs prefix has been dropped.

So here is how to proceed:

First you can use the following function to make a GRanges object from
your SNP ids:

makeGRangesFromRefSNPids <- function(myids)
{
     ans_seqnames <- character(length(myids))
     ans_seqnames[] <- "unknown"
     ans_locs <- integer(length(myids))
     for (seqname in names(getSNPcount())) {
         locs <- getSNPlocs(seqname)
         ids <- paste("rs", locs$RefSNP_id, sep="")
         myrows <- match(myids, ids)
         ans_seqnames[!is.na(myrows)] <- seqname
         ans_locs[!is.na(myrows)] <- locs$loc[myrows]
     }
     GRanges(seqnames=ans_seqnames,
             IRanges(start=ans_locs, width=1),
             RefSNP_id=myids)
}

This takes between 3 and 5 minutes:

 > myids <- c("rs7547453", "rs2840542", "rs1999527", "rs4648545",
              "rs10915459", "rs16838750", "rs12128230", "rs999999999")
 > mysnps <- makeGRangesFromRefSNPids(myids)
 > mysnps  # a GRanges object with 1 SNP per row
GRanges with 8 ranges and 1 elementMetadata value
     seqnames             ranges strand |       myids
        <Rle>          <IRanges>  <Rle> | <character>
[1]      ch1 [2195117, 2195117]      * |   rs7547453
[2]      ch1 [2291680, 2291680]      * |   rs2840542
[3]      ch1 [3256108, 3256108]      * |   rs1999527
[4]      ch1 [3577321, 3577321]      * |   rs4648545
[5]      ch1 [4230463, 4230463]      * |  rs10915459
[6]      ch1 [4404344, 4404344]      * |  rs16838750
[7]      ch1 [4501911, 4501911]      * |  rs12128230
[8]  unknown [      0,       0]      * | rs999999999

seqlengths
      ch1 unknown
       NA      NA

The next step is to create a TranscriptDb object with
makeTranscriptDbFromUCSC() or makeTranscriptDbFromBiomart()
from the GenomicFeatures package. This TranscriptDb object will
contain the transcript locations and their associated
genes extracted from the annotation source you choose.
For example, if you want to use RefSeq genes:

## Takes about 3 minutes:
 > txdb <- makeTranscriptDbFromUCSC(genome="hg19", tablename="refGene")
 > txdb
TranscriptDb object:
| Db type: TranscriptDb
| Data source: UCSC
| Genome: hg19
| UCSC Table: refGene
| Type of Gene ID: Entrez Gene ID
| Full dataset: yes
| transcript_nrow: 37924
| exon_nrow: 230024
| cds_nrow: 204571
| Db created by: GenomicFeatures package from Bioconductor
| Creation time: 2010-12-05 19:41:40 -0800 (Sun, 05 Dec 2010)
| GenomicFeatures version at creation time: 1.2.2
| RSQLite version at creation time: 0.9-4
| DBSCHEMAVERSION: 1.0

Note the type of gene IDs (Entrez Gene ID) stored in this TranscriptDb
object: this means that later you will be able to use the org.Hs.eg.db
package to map your gene ids to their symbol (the org.*.eg.db packages
are Entrez Gene ID centric).

To extract the transcript locations together with their genes:

 > tx <- transcripts(txdb, columns=c("tx_id", "tx_name", "gene_id"))
 > tx  # a GRanges object with 1 transcript per row
GRanges with 37924 ranges and 1 elementMetadata value
         seqnames               ranges strand   |                   gene_id
            <Rle>            <IRanges>  <Rle>   | <CompressedCharacterList>
     [1]     chr1     [ 69091,  70008]      +   |                     79501
     [2]     chr1     [323892, 328581]      +   |                 100133331
     [3]     chr1     [323892, 328581]      +   |                 100132287
     [4]     chr1     [323892, 328581]      +   |                 100132062
     [5]     chr1     [367659, 368597]      +   |                     81399
     [6]     chr1     [367659, 368597]      +   |                    729759
     [7]     chr1     [367659, 368597]      +   |                     26683
     [8]     chr1     [763064, 789740]      +   |                    643837
     [9]     chr1     [861121, 879961]      +   |                    148398
     ...      ...                  ...    ... ...                       ...
[37916]     chrY [27177050, 27198251]      -   |                      9083
[37917]     chrY [27177050, 27198251]      -   |                    442867
[37918]     chrY [27177050, 27198251]      -   |                    442868
[37919]     chrY [27209230, 27246039]      -   |                    114761
[37920]     chrY [27209230, 27246039]      -   |                    474150
[37921]     chrY [27209230, 27246039]      -   |                    474149
[37922]     chrY [27329790, 27330920]      -   |                    252949
[37923]     chrY [27329790, 27330920]      -   |                    474152
[37924]     chrY [27329790, 27330920]      -   |                    474151

seqlengths
                   chr1                  chr2 ... chr18_gl000207_random
              249250621             243199373 ...                  4262

Now you can use findOverlaps() on 'mysnps' and 'tx' to find
the transcripts hits by your snps. But before you can do this,
you need to rename the sequences in 'mysnps' because dbSNPs and
UCSC use different naming conventions for the chromosomes:

 > seqnames(mysnps) <- sub("ch", "chr", seqnames(mysnps))

Then:

 > map <- as.matrix(findOverlaps(mysnps, tx))

'map' contains the mapping between your SNPs and their genes but not
in a readable form (this matrix contains indices) so we make the
'snp2gene' data frame with 2 cols: 1 for your SNP ids and 1 for
the associated gene ids:

 > mapped_genes <- values(tx)$gene_id[map[, 2]]
 > mapped_snps <- rep.int(values(mysnps)$myids[map[, 1]], 
elementLengths(mapped_genes))
 > snp2gene <- unique(data.frame(snp_id=mapped_snps, 
gene_id=unlist(mapped_genes)))
 > rownames(snp2gene) <- NULL
 > snp2gene[1:4, ]
      snp_id gene_id
1 rs7547453    6497
2 rs2840542   79906
3 rs1999527   63976
4 rs4648545    7161

Note that there is no guarantee that the number of rows in this
data frame is the number of your original SNP ids because the
relation between SNP ids and gene ids is of course not one-to-one.

Also the method described above considers that a SNP hits a gene
if it's located between the start and the end of one of its
transcripts but it doesn't take in account the exon structure of
the transcripts. If you want to do this you need to use exonsBy()
(from GenomicFeatures) to extract the exons grouped by transcripts
(this will be stored in a GRangesList object) and use this object
instead of 'tx' in the call to findOverlaps().

Hope this helps,
H.


>
>
>
>     Simon Noël
>     CdeC
> _______________________________________________
> Bioconductor mailing list
> Bioconductor at r-project.org
> https://stat.ethz.ch/mailman/listinfo/bioconductor
> Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor


-- 
Hervé Pagès

Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Ave. N, M2-B876
P.O. Box 19024
Seattle, WA 98109-1024

E-mail: hpages at fhcrc.org
Phone:  (206) 667-5791
Fax:    (206) 667-1319



More information about the Bioconductor mailing list