[BioC] rMAT tutorial. Data file too large?

Patrick Schorderet patrick.schorderet at epfl.ch
Tue Apr 27 17:01:09 CEST 2010


Hello everybody,

I wanted to use rMAT for some of my ChIP-chip analysis and tried to  
follow the tutorial (http://wiki.rglab.org/index.php? 
title=Public:RMAT). I have updated everything (R version 2.11.0 and  
rMAT version 2.4.0) and have downloaded the tutorial data file (EM). I  
have managed to do everything up to the rbind part. I have the same  
summary as in the tutorial (summary(ER)), but as soon as I try to  
normalize the data, my R crashes. I am wondering if any of you have  
experienced similar outcomes? Could the amount of processing be too  
large? Has any of you been able to successfully follow the tutorial?

Thanks for any useful help,

Patrick











R version 2.11.0 (2010-04-22)
Copyright (C) 2010 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R est un logiciel libre livré sans AUCUNE GARANTIE.
Vous pouvez le redistribuer sous certaines conditions.
Tapez 'license()' ou 'licence()' pour plus de détails.

R est un projet collaboratif avec de nombreux contributeurs.
Tapez 'contributors()' pour plus d'information et
'citation()' pour la façon de le citer dans les publications.

Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide
en ligne ou 'help.start()' pour obtenir l'aide au format HTML.
Tapez 'q()' pour quitter R.

[R.app GUI 1.32 (5573) i386-apple-darwin9.8.0]

 > library(rMAT)
Le chargement a nécessité le package : IRanges

Attachement du package : 'IRanges'

The following object(s) are masked from 'package:base':

     cbind, Map, mapply, order, paste, pmax, pmax.int, pmin, pmin.int,  
rbind, rep.int,
     table

Le chargement a nécessité le package : Biobase

Welcome to Bioconductor

   Vignettes contain introductory material. To view, type
   'openVignette()'. To cite Bioconductor, see
   'citation("Biobase")' and for packages 'citation(pkgname)'.


Attachement du package : 'Biobase'

The following object(s) are masked from 'package:IRanges':

     updateObject

Le chargement a nécessité le package : affxparser
 > bpmapA<-"P1_CHIP_A.Anti-Sense.hs.NCBIv35.NR.bpmap"
 > celA<-c("MCF_ER_A1.CEL","MCF_ER_A3.CEL", "MCF_ER_A4.CEL",  
"MCF_INP_A1.CEL", "MCF_INP_A3.CEL","MCF_INP_A4.CEL")
 > ERA<-BPMAPCelParser(bpmapA, celA, seqName="chr2")
 > bpmapB<-"P1_CHIP_B.Anti-Sense.hs.NCBIv35.NR.bpmap"
 > celB<-c("MCF_ER_B1.CEL","MCF_ER_B3.CEL", "MCF_ER_B4.CEL",  
"MCF_INP_B1.CEL", "MCF_INP_B3.CEL","MCF_INP_B4.CEL")
 > ERB<-BPMAPCelParser(bpmapB, celB, seqName="chr2")
 > bpmapC<-"P1_CHIP_C.Anti-Sense.hs.NCBIv35.NR.bpmap"
 > celC<-c("MCF_ER_C1.CEL","MCF_ER_C3.CEL", "MCF_ER_C4.CEL",  
"MCF_INP_C1.CEL", "MCF_INP_C3.CEL","MCF_INP_C4.CEL")
 > ERC<-BPMAPCelParser(bpmapC, celC, seqName="chr2")
 >
 >
 > ER<-rbind(ERA,ERB,ERC)
 >
 > summary(ER)
    Genome interrogated:  P1_CHIP_A.Anti-Sense.hs.NCBIv35.NR  
P1_CHIP_B.Anti-Sense.hs.NCBIv35.NR P1_CHIP_C.Anti-Sense.hs.NCBIv35.NR
    Chromosome(s) interrogated: chr21, chr22
    Sample name(s):  MCF_ER_A1 MCF_ER_A3 MCF_ER_A4 MCF_INP_A1  
MCF_INP_A3 MCF_INP_A4
    The total number of probes is:  1015922
    Preprocessing Information
      - Transformation: log
      - Normalization: none 


More information about the Bioconductor mailing list