[BioC] rMAT tutorial. Data file too large?
Patrick Schorderet
patrick.schorderet at epfl.ch
Tue Apr 27 17:01:09 CEST 2010
Hello everybody,
I wanted to use rMAT for some of my ChIP-chip analysis and tried to
follow the tutorial (http://wiki.rglab.org/index.php?
title=Public:RMAT). I have updated everything (R version 2.11.0 and
rMAT version 2.4.0) and have downloaded the tutorial data file (EM). I
have managed to do everything up to the rbind part. I have the same
summary as in the tutorial (summary(ER)), but as soon as I try to
normalize the data, my R crashes. I am wondering if any of you have
experienced similar outcomes? Could the amount of processing be too
large? Has any of you been able to successfully follow the tutorial?
Thanks for any useful help,
Patrick
R version 2.11.0 (2010-04-22)
Copyright (C) 2010 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
R est un logiciel libre livré sans AUCUNE GARANTIE.
Vous pouvez le redistribuer sous certaines conditions.
Tapez 'license()' ou 'licence()' pour plus de détails.
R est un projet collaboratif avec de nombreux contributeurs.
Tapez 'contributors()' pour plus d'information et
'citation()' pour la façon de le citer dans les publications.
Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide
en ligne ou 'help.start()' pour obtenir l'aide au format HTML.
Tapez 'q()' pour quitter R.
[R.app GUI 1.32 (5573) i386-apple-darwin9.8.0]
> library(rMAT)
Le chargement a nécessité le package : IRanges
Attachement du package : 'IRanges'
The following object(s) are masked from 'package:base':
cbind, Map, mapply, order, paste, pmax, pmax.int, pmin, pmin.int,
rbind, rep.int,
table
Le chargement a nécessité le package : Biobase
Welcome to Bioconductor
Vignettes contain introductory material. To view, type
'openVignette()'. To cite Bioconductor, see
'citation("Biobase")' and for packages 'citation(pkgname)'.
Attachement du package : 'Biobase'
The following object(s) are masked from 'package:IRanges':
updateObject
Le chargement a nécessité le package : affxparser
> bpmapA<-"P1_CHIP_A.Anti-Sense.hs.NCBIv35.NR.bpmap"
> celA<-c("MCF_ER_A1.CEL","MCF_ER_A3.CEL", "MCF_ER_A4.CEL",
"MCF_INP_A1.CEL", "MCF_INP_A3.CEL","MCF_INP_A4.CEL")
> ERA<-BPMAPCelParser(bpmapA, celA, seqName="chr2")
> bpmapB<-"P1_CHIP_B.Anti-Sense.hs.NCBIv35.NR.bpmap"
> celB<-c("MCF_ER_B1.CEL","MCF_ER_B3.CEL", "MCF_ER_B4.CEL",
"MCF_INP_B1.CEL", "MCF_INP_B3.CEL","MCF_INP_B4.CEL")
> ERB<-BPMAPCelParser(bpmapB, celB, seqName="chr2")
> bpmapC<-"P1_CHIP_C.Anti-Sense.hs.NCBIv35.NR.bpmap"
> celC<-c("MCF_ER_C1.CEL","MCF_ER_C3.CEL", "MCF_ER_C4.CEL",
"MCF_INP_C1.CEL", "MCF_INP_C3.CEL","MCF_INP_C4.CEL")
> ERC<-BPMAPCelParser(bpmapC, celC, seqName="chr2")
>
>
> ER<-rbind(ERA,ERB,ERC)
>
> summary(ER)
Genome interrogated: P1_CHIP_A.Anti-Sense.hs.NCBIv35.NR
P1_CHIP_B.Anti-Sense.hs.NCBIv35.NR P1_CHIP_C.Anti-Sense.hs.NCBIv35.NR
Chromosome(s) interrogated: chr21, chr22
Sample name(s): MCF_ER_A1 MCF_ER_A3 MCF_ER_A4 MCF_INP_A1
MCF_INP_A3 MCF_INP_A4
The total number of probes is: 1015922
Preprocessing Information
- Transformation: log
- Normalization: none
More information about the Bioconductor
mailing list