[BioC] microarray analysis in R without replicates
Naomi Altman
naomi at stat.psu.edu
Wed Sep 23 05:25:38 CEST 2009
You cannot control the error rates or assign any statistical
interpretation to the data. But you can still look and see what
might be interesting. However, you do have to ask the investigators
how much time and money they want to throw at an analysis that will
have a very high false positive and false negative rate. Which
depends, I suppose on the relative cost of someone's time to do the
analyses and validation studies versus the cost of collecting some
replicates.
--Naomi
At 03:16 PM 9/22/2009, Rainer Tischler wrote:
>Komplettansicht
>Dear all,
>
>I
>have received a microarray data set in standard Affymetrix CEL-format
>consisting of only six samples without any replicates (same organism
>and cell type, but different individuals and different biological
>conditions for each individual; the same Affymetrix GeneChip platform
>was used for all samples). Moreover, the data was apparently collected
>without any a-priori biological hypothesis.
>
>I know that it is
>impossible to apply standard clustering, feature selection or
>classification techniques in this case. However, I am wondering whether
>anybody is aware of a method in R to extract meaningful biological
>information in this case (i.e. from single-sample microarray data or
>from multiple samples with different biological conditions and no
>replicates) - or is there nothing I can do given the above limitations?
>
>Many thanks,
>Rainer
>
>
>
>
>_______________________________________________
>Bioconductor mailing list
>Bioconductor at stat.math.ethz.ch
>https://stat.ethz.ch/mailman/listinfo/bioconductor
>Search the archives:
>http://news.gmane.org/gmane.science.biology.informatics.conductor
Naomi S. Altman 814-865-3791 (voice)
Associate Professor
Dept. of Statistics 814-863-7114 (fax)
Penn State University 814-865-1348 (Statistics)
University Park, PA 16802-2111
More information about the Bioconductor
mailing list