[BioC] intraSpotCorrelation consensus values for Single Channel analysis in limma
Jenny Drnevich
drnevich at illinois.edu
Wed May 13 18:22:33 CEST 2009
Hi Thierry,
What kind of dual-channel arrays are these? I've seen very low
intra-spot correlations from Agilent arrays, which have extremely
high array to array spot consistency. Old-style pin-tip printed
arrays had high intra-spot correlations because the amount of probe
per spot could not be controlled very well from array to array.
Cheers,
Jenny
At 10:16 AM 5/13/2009, Thierry Janssens wrote:
>Dear BioC,
>
>while performing Single Channel Analysis in limma, according to
>chapter 9 of the limma users guide, I notice that the R and G
>foreground intensities are not correlated at all. I did not find a
>thread about that problem on the forum. I am wondering what the
>cause could be...
>
>The experiment is an unconnected/saturated design of 5 conditions,
>on whcih I want to perform t-tests between the conditions.
>
>
>...
> > RGbc <- backgroundCorrect(RGlist, method = "edwards", offset = 30)
> > MA <- normalizeWithinArrays(RGbc[j, ], method ="loess")
> > targets
> Archive Filename Cy5 Cy3
>1 File SSArray1.txt A B
>2 File SSArray2.txt B C
>3 File SSArray3.txt C AC
>4 File SSArray4.txt AC AB
>5 File SSArray5.txt AB A
>6 File SSArray6.txt A C
>7 File SSArray7.txt C AB
>8 File SSArray8.txt AB B
>9 File SSArray9.txt B AC
>10 File SSArray10.txt AC A
> > #sorteren op duplo
> > o <- order(MA$genes$ProbeUID)
> > MAsorted <- MA[o,]
> > o <- order(MAbet$genes$ProbeUID)
> > MAbetsorted <- MAbet[o,]
> > r <- 0
> > for(q in seq(1, nrow(MAbetsorted), 3)) {
>+ r <- as.numeric((identical(MAbetsorted$genes$probeUID[q],
>MAbetsorted$genes$probeUID[q+1]))
>+ && (identical(MAbetsorted$genes$probeUID[q],
>MAbetsorted$genes$probeUID[q+2])) ) + r
>+ }
> > r
>[1] 5069
> > # r moet 5069 zijn
> > # Separate channel analysis in limma
> > MAbetsortedav <- avedups(MAbetsorted, ndups = 3, spacing =1)
> > targets <- readTargets("filelist.txt")
> > targetstest <- targetsA2C(targets)
> > u <- unique(targetstest$Target)
> > f <- factor(targetstest$Target, levels=u)
> > design <- model.matrix(~0+f)
> > colnames(design) <- u
> > design
> B A C AC AB
>1 1 0 0 0 0
>2 0 1 0 0 0
>3 0 0 1 0 0
>4 1 0 0 0 0
>5 0 0 0 1 0
>6 0 0 1 0 0
>7 0 0 0 0 1
>8 0 0 0 1 0
>9 0 1 0 0 0
>10 0 0 0 0 1
>11 0 0 1 0 0
>12 0 1 0 0 0
>13 0 0 0 0 1
>14 0 0 1 0 0
>15 1 0 0 0 0
>16 0 0 0 0 1
>17 0 0 0 1 0
>18 1 0 0 0 0
>19 0 1 0 0 0
>20 0 0 0 1 0
>attr(,"assign")
>[1] 1 1 1 1 1
>attr(,"contrasts")
>attr(,"contrasts")$f
>[1] "contr.treatment"
> > corfit <- intraspotCorrelation(MAbetsortedav, design)
>Warning messages:
>1: In remlscore(y, X, Z) : reml: Max iterations exceeded
>2: In remlscore(y, X, Z) : reml: Max iterations exceeded
> > corfit$consensus.correlation
>[1] *0.06922669
>
>*In previous threads I read that this correlation should be 0.8-0.9
>(after backtransformation with tanh). What now?
>
>
>kind regards,
>
>Thierry
>
>--
>Thierry K.S. Janssens
>Vrije Universiteit Amsterdam
>Faculty of Earth and Life Sciences
>Institute of Ecological Science
>Department of Animal Ecology,
>De Boelelaan 1085
>1081 HV AMSTERDAM, The Netherlands
>Phone: +31 (0)20-5989147
>Fax: +31 (0)20-5987123
>thierry.janssens at ecology.falw.vu.nl
>
>
>
>_______________________________________________
>Bioconductor mailing list
>Bioconductor at stat.math.ethz.ch
>https://stat.ethz.ch/mailman/listinfo/bioconductor
>Search the archives:
>http://news.gmane.org/gmane.science.biology.informatics.conductor
Jenny Drnevich, Ph.D.
Functional Genomics Bioinformatics Specialist
W.M. Keck Center for Comparative and Functional Genomics
Roy J. Carver Biotechnology Center
University of Illinois, Urbana-Champaign
330 ERML
1201 W. Gregory Dr.
Urbana, IL 61801
USA
ph: 217-244-7355
fax: 217-265-5066
e-mail: drnevich at illinois.edu
More information about the Bioconductor
mailing list