[BioC] nsFilter and GSEA
Paolo Innocenti
paolo.innocenti at ebc.uu.se
Fri Jan 11 16:59:22 CET 2008
Hi again,
I tried with a different normalisation method, and I was pretty
surprised by the results:
> eset.mas <- mas5(mydata)
background correction: mas
PM/MM correction : mas
expression values: mas
background correcting...done.
14010 ids to be processed
| |
|####################|
> eset.mas.f <- nsFilter(eset.mas)
> eset.mas.f$filter.log
$numDupsRemoved
[1] 1098
$numLowVar
[1] 1
$feature.exclude
[1] 3
$numRemoved.ENTREZID
[1] 786
> eset.rma <- rma(mydata)
Background correcting
Normalizing
Calculating Expression
> eset.rma.f <- nsFilter(eset.rma)
> eset.rma.f$filter.log
$numDupsRemoved
[1] 3
$numLowVar
[1] 13047
$feature.exclude
[1] 3
$numRemoved.ENTREZID
[1] 786
> dim(eset.rma.f$eset)
Features Samples
171 15
> dim(eset.mas.f$eset)
Features Samples
12122 15
I don't understand how is it possible. Any suggestion about what to do?
Should I lower the cutoff for the rma, or that processing method doesn't
work for my dataset?
Paolo
PS: I tried also a really low cutoff, but the situation doesn't change,
unless I choose a cutoff=0.1:
> eset.filter <- nsFilter(eset,var.cutoff=0.2)
> eset.filter$filter.log
$numDupsRemoved
[1] 69
$numLowVar
[1] 10560
$feature.exclude
[1] 3
$numRemoved.ENTREZID
[1] 786
More information about the Bioconductor
mailing list