[BioC] beadarray package: problem with object made by createBeadSummaryData

Krys Kelly kak28 at cam.ac.uk
Mon Nov 12 16:56:02 CET 2007


Hello

Using R 2.5.1, I have read in and explored the bead level data from 5
Illumina mouse-6 slides which have 6 arrays per slide and 2 images per
array.

I have also created and saved bead summary data trying out a few options for
the background correction.

When I was using R 2.5.1 and the corresponding versions of bioconductor and
beadarray and everything worked fine.

But I want to upgrade to R 2.6.0. I have installed R 2.6.0 and the
corresponding versions of bioconductor and beadarray.  I now find that
se.exprs is completely filled with NAs.  

I have compared the documentation from the two versions of beadarray
expecting that there was a new option that I needed to specify, but I can't
find anything that would account for the NAs

Please can you suggest what the problem is.

My program code, output from the BSData object and sessionInfo() are pasted
below.

Thanks

Krys


PROGRAM CODE
------------
# Read the bead level data
BLData39A <- readIllumina(arrayNames=c("1863191039_A_1", "1863191039_A_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData39B <- readIllumina(arrayNames=c("1863191039_B_1", "1863191039_B_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData39C <- readIllumina(arrayNames=c("1863191039_C_1", "1863191039_C_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData39D <- readIllumina(arrayNames=c("1863191039_D_1", "1863191039_D_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData39E <- readIllumina(arrayNames=c("1863191039_E_1", "1863191039_E_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData39F <- readIllumina(arrayNames=c("1863191039_F_1", "1863191039_F_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)

BLData46A <- readIllumina(arrayNames=c("1863191046_A_1", "1863191046_A_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData46B <- readIllumina(arrayNames=c("1863191046_B_1", "1863191046_B_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData46C <- readIllumina(arrayNames=c("1863191046_C_1", "1863191046_C_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData46D <- readIllumina(arrayNames=c("1863191046_D_1", "1863191046_D_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData46E <- readIllumina(arrayNames=c("1863191046_E_1", "1863191046_E_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData46F <- readIllumina(arrayNames=c("1863191046_F_1", "1863191046_F_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)

BLData49A <- readIllumina(arrayNames=c("1863191049_A_1", "1863191049_A_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData49B <- readIllumina(arrayNames=c("1863191049_B_1", "1863191049_B_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData49C <- readIllumina(arrayNames=c("1863191049_C_1", "1863191049_C_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData49D <- readIllumina(arrayNames=c("1863191049_D_1", "1863191049_D_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData49E <- readIllumina(arrayNames=c("1863191049_E_1", "1863191049_E_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData49F <- readIllumina(arrayNames=c("1863191049_F_1", "1863191049_F_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
		
BLData50A <- readIllumina(arrayNames=c("1863191050_A_1", "1863191050_A_2"),
textType=".txt", backgroundMethod="none", rmoffset=0,normalizeMethod="none",
metrics=FALSE)
BLData50B <- readIllumina(arrayNames=c("1863191050_B_1", "1863191050_B_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData50C <- readIllumina(arrayNames=c("1863191050_C_1", "1863191050_C_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData50D <- readIllumina(arrayNames=c("1863191050_D_1", "1863191050_D_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData50E <- readIllumina(arrayNames=c("1863191050_E_1", "1863191050_E_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData50F <- readIllumina(arrayNames=c("1863191050_F_1", "1863191050_F_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
	
BLData52A <- readIllumina(arrayNames=c("1863191052_A_1", "1863191052_A_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData52B <- readIllumina(arrayNames=c("1863191052_B_1", "1863191052_B_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData52C <- readIllumina(arrayNames=c("1863191052_C_1", "1863191052_C_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData52D <- readIllumina(arrayNames=c("1863191052_D_1", "1863191052_D_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData52E <- readIllumina(arrayNames=c("1863191052_E_1", "1863191052_E_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)
BLData52F <- readIllumina(arrayNames=c("1863191052_F_1", "1863191052_F_2"),
textType=".txt", backgroundMethod="none", offset=0,normalizeMethod="none",
metrics=FALSE)

# Creation of summary data
BSData39A <- createBeadSummaryData(BLData39A, log=FALSE,n=3,
imagesPerArray=2)
BSData39B <- createBeadSummaryData(BLData39B, log=FALSE,n=3,
imagesPerArray=2)
BSData39C <- createBeadSummaryData(BLData39C, log=FALSE,n=3,
imagesPerArray=2)
BSData39D <- createBeadSummaryData(BLData39D, log=FALSE,n=3,
imagesPerArray=2)
BSData39E <- createBeadSummaryData(BLData39E, log=FALSE,n=3,
imagesPerArray=2)
BSData39F <- createBeadSummaryData(BLData39F, log=FALSE,n=3,
imagesPerArray=2)

BSData46A <- createBeadSummaryData(BLData46A, log=FALSE,n=3,
imagesPerArray=2)
BSData46B <- createBeadSummaryData(BLData46B, log=FALSE,n=3,
imagesPerArray=2)
BSData46C <- createBeadSummaryData(BLData46C, log=FALSE,n=3,
imagesPerArray=2)
BSData46D <- createBeadSummaryData(BLData46D, log=FALSE,n=3,
imagesPerArray=2)
BSData46E <- createBeadSummaryData(BLData46E, log=FALSE,n=3,
imagesPerArray=2)
BSData46F <- createBeadSummaryData(BLData46F, log=FALSE,n=3,
imagesPerArray=2)

BSData49A <- createBeadSummaryData(BLData49A, log=FALSE,n=3,
imagesPerArray=2)
BSData49B <- createBeadSummaryData(BLData49B, log=FALSE,n=3,
imagesPerArray=2)
BSData49C <- createBeadSummaryData(BLData49C, log=FALSE,n=3,
imagesPerArray=2)
BSData49D <- createBeadSummaryData(BLData49D, log=FALSE,n=3,
imagesPerArray=2)
BSData49E <- createBeadSummaryData(BLData49E, log=FALSE,n=3,
imagesPerArray=2)
BSData49F <- createBeadSummaryData(BLData49F, log=FALSE,n=3,
imagesPerArray=2)

BSData50A <- createBeadSummaryData(BLData50A, log=FALSE,n=3,
imagesPerArray=2)
BSData50B <- createBeadSummaryData(BLData50B, log=FALSE,n=3,
imagesPerArray=2)
BSData50C <- createBeadSummaryData(BLData50C, log=FALSE,n=3,
imagesPerArray=2)
BSData50D <- createBeadSummaryData(BLData50D, log=FALSE,n=3,
imagesPerArray=2)
BSData50E <- createBeadSummaryData(BLData50E, log=FALSE,n=3,
imagesPerArray=2)
BSData50F <- createBeadSummaryData(BLData50F, log=FALSE,n=3,
imagesPerArray=2)

BSData52A <- createBeadSummaryData(BLData52A, log=FALSE,n=3,
imagesPerArray=2)
BSData52B <- createBeadSummaryData(BLData52B, log=FALSE,n=3,
imagesPerArray=2)
BSData52C <- createBeadSummaryData(BLData52C, log=FALSE,n=3,
imagesPerArray=2)
BSData52D <- createBeadSummaryData(BLData52D, log=FALSE,n=3,
imagesPerArray=2)
BSData52E <- createBeadSummaryData(BLData52E, log=FALSE,n=3,
imagesPerArray=2)
BSData52F <- createBeadSummaryData(BLData52F, log=FALSE,n=3,
imagesPerArray=2)

BSData <- combine(
	BSData39A, BSData39B, BSData39C, BSData39D, BSData39E, BSData39F, 
	BSData46A, BSData46B, BSData46C, BSData46D, BSData46E, BSData46F, 
	BSData49A, BSData49B, BSData49C, BSData49D, BSData49E, BSData49F, 
	BSData50A, BSData50B, BSData50C, BSData50D, BSData50E, BSData50F, 
	BSData52A, BSData52B, BSData52C, BSData52D, BSData52E, BSData52F)


OUTPUT FROM SESSSION USING BSData
---------------------------------

> BSData
ExpressionSetIllumina (storageMode: list)
assayData: 48358 features, 30 samples 
  element names: exprs, se.exprs, NoBeads 
phenoData
  rowNames: 1863191039_A_1, 1863191039_B_1, ..., 1863191052_F_1  (30 total)
  varLabels and varMetadata description:
    arrayName: NA
featureData
  featureNames: 
  fvarLabels and fvarMetadata description: none
experimentData: use 'experimentData(object)'
Annotation: illuminaProbeIDs 
> slotNames(BSData)
[1] "QC"                "assayData"         "phenoData"        
[4] "featureData"       "experimentData"    "annotation"       
[7] ".__classVersion__"
> names(assayData(BSData))
[1] "exprs"    "se.exprs" "NoBeads" 
> dim(assayData(BSData)$exprs)
[1] 48358    30
> dim(assayData(BSData)$se.exprs)
[1] 48358    30
> exprs(BSData)[1:10,1:2]
      1863191039_A_1 1863191039_B_1
10243       84.31794       90.07728
10280       77.86524       78.17629
10575      148.53714      154.93587
20048       74.88917       71.63645
20296    18520.55707    20620.06535
20343       60.40684       61.49921
20373       64.48009       63.93970
20431    26997.07647    29130.48258
50008      114.36110      267.88378
50014       47.48685       43.68849
> se.exprs(BSData)[1:10,1:2]
      1863191039_A_1 1863191039_B_1
10243             NA             NA
10280             NA             NA
10575             NA             NA
20048             NA             NA
20296             NA             NA
20343             NA             NA
20373             NA             NA
20431             NA             NA
50008             NA             NA
50014             NA             NA
> pData(BSData)[,1]
1863191039_A_1 1863191039_B_1 1863191039_C_1 1863191039_D_1 1863191039_E_1 
1863191039_A_1 1863191039_B_1 1863191039_C_1 1863191039_D_1 1863191039_E_1 
1863191039_F_1 1863191046_A_1 1863191046_B_1 1863191046_C_1 1863191046_D_1 
1863191039_F_1 1863191046_A_1 1863191046_B_1 1863191046_C_1 1863191046_D_1 
1863191046_E_1 1863191046_F_1 1863191049_A_1 1863191049_B_1 1863191049_C_1 
1863191046_E_1 1863191046_F_1 1863191049_A_1 1863191049_B_1 1863191049_C_1 
1863191049_D_1 1863191049_E_1 1863191049_F_1 1863191050_A_1 1863191050_B_1 
1863191049_D_1 1863191049_E_1 1863191049_F_1 1863191050_A_1 1863191050_B_1 
1863191050_C_1 1863191050_D_1 1863191050_E_1 1863191050_F_1 1863191052_A_1 
1863191050_C_1 1863191050_D_1 1863191050_E_1 1863191050_F_1 1863191052_A_1 
1863191052_B_1 1863191052_C_1 1863191052_D_1 1863191052_E_1 1863191052_F_1 
1863191052_B_1 1863191052_C_1 1863191052_D_1 1863191052_E_1 1863191052_F_1 
30 Levels: 1863191039_A_1 1863191039_B_1 1863191039_C_1 ... 1863191052_F_1
> pData(BSData)[,2]
NULL
> pData(BSData)[,2]
NULL
> pData(BSData)[,1]
1863191039_A_1 1863191039_B_1 1863191039_C_1 1863191039_D_1 1863191039_E_1
1863191039_F_1 1863191046_A_1 
1863191039_A_1 1863191039_B_1 1863191039_C_1 1863191039_D_1 1863191039_E_1
1863191039_F_1 1863191046_A_1 
1863191046_B_1 1863191046_C_1 1863191046_D_1 1863191046_E_1 1863191046_F_1
1863191049_A_1 1863191049_B_1 
1863191046_B_1 1863191046_C_1 1863191046_D_1 1863191046_E_1 1863191046_F_1
1863191049_A_1 1863191049_B_1 
1863191049_C_1 1863191049_D_1 1863191049_E_1 1863191049_F_1 1863191050_A_1
1863191050_B_1 1863191050_C_1 
1863191049_C_1 1863191049_D_1 1863191049_E_1 1863191049_F_1 1863191050_A_1
1863191050_B_1 1863191050_C_1 
1863191050_D_1 1863191050_E_1 1863191050_F_1 1863191052_A_1 1863191052_B_1
1863191052_C_1 1863191052_D_1 
1863191050_D_1 1863191050_E_1 1863191050_F_1 1863191052_A_1 1863191052_B_1
1863191052_C_1 1863191052_D_1 
1863191052_E_1 1863191052_F_1 
1863191052_E_1 1863191052_F_1 
30 Levels: 1863191039_A_1 1863191039_B_1 1863191039_C_1 1863191039_D_1
1863191039_E_1 ... 1863191052_F_1
> pData(BSData)[,1]
1863191039_A_1 1863191039_B_1 1863191039_C_1 1863191039_D_1 1863191039_E_1
1863191039_F_1 
1863191039_A_1 1863191039_B_1 1863191039_C_1 1863191039_D_1 1863191039_E_1
1863191039_F_1 
1863191046_A_1 1863191046_B_1 1863191046_C_1 1863191046_D_1 1863191046_E_1
1863191046_F_1 
1863191046_A_1 1863191046_B_1 1863191046_C_1 1863191046_D_1 1863191046_E_1
1863191046_F_1 
1863191049_A_1 1863191049_B_1 1863191049_C_1 1863191049_D_1 1863191049_E_1
1863191049_F_1 
1863191049_A_1 1863191049_B_1 1863191049_C_1 1863191049_D_1 1863191049_E_1
1863191049_F_1 
1863191050_A_1 1863191050_B_1 1863191050_C_1 1863191050_D_1 1863191050_E_1
1863191050_F_1 
1863191050_A_1 1863191050_B_1 1863191050_C_1 1863191050_D_1 1863191050_E_1
1863191050_F_1 
1863191052_A_1 1863191052_B_1 1863191052_C_1 1863191052_D_1 1863191052_E_1
1863191052_F_1 
1863191052_A_1 1863191052_B_1 1863191052_C_1 1863191052_D_1 1863191052_E_1
1863191052_F_1 
30 Levels: 1863191039_A_1 1863191039_B_1 1863191039_C_1 1863191039_D_1 ...
1863191052_F_1
> 
> 

SESSION INFO
------------
> sessionInfo()
R version 2.6.0 (2007-10-03) 
i386-pc-mingw32 

locale:
LC_COLLATE=English_United Kingdom.1252;LC_CTYPE=English_United
Kingdom.1252;LC_MONETARY=English_United
Kingdom.1252;LC_NUMERIC=C;LC_TIME=English_United Kingdom.1252

attached base packages:
[1] tools     stats     graphics  grDevices utils     datasets  methods
base     

other attached packages:
 [1] beadarray_1.6.0      affy_1.16.0          preprocessCore_1.0.0
affyio_1.6.1        
 [5] geneplotter_1.16.0   lattice_0.16-5       annotate_1.16.1
xtable_1.5-2        
 [9] AnnotationDbi_1.0.6  RSQLite_0.6-4        DBI_0.2-4
Biobase_1.16.1      
[13] limma_2.12.0        

loaded via a namespace (and not attached):
[1] grid_2.6.0         KernSmooth_2.22-21 RColorBrewer_1.0-2
> 
> 
> 
> pData(BSData)[1,1]
1863191039_A_1 
1863191039_A_1 
30 Levels: 1863191039_A_1 1863191039_B_1 1863191039_C_1 1863191039_D_1 ...
1863191052_F_1
>





Dr Krystyna A Kelly (Krys)
 
Department of Pathology
University of Cambridge, Tennis Court Road, Cambridge CB2 1QP
Tel: 01223 333331

and

MRC Biostatistics Unit
Institute of Public Health, Robinson Way, Cambridge CB2 0SR
Tel: 01223 767408

Email: kak28 at cam.ac.uk



More information about the Bioconductor mailing list