[BioC] choosing the right model in limma
Lina Hultin-Rosenberg
Lina.Hultin.Rosenberg at ebc.uu.se
Thu Sep 21 16:27:30 CEST 2006
Dear list,
I am analyzing some affymetrix chicken data using limma and have a question
on the best approach regarding random and fixed effects. The target matrix
is as follows:
samplenames sex tissue date
individual
PA009_kyckling_11_H16_060630.CEL male heart 1
16
PA009_kyckling_11_H19_060705.CEL male heart 3
19
PA009_kyckling_11_H21_060630.CEL male heart 1
21
PA009_kyckling_11_H9_060704.CEL male heart 2 9
PA009_kyckling_12_B16_060704.CEL male brain 2
16
PA009_kyckling_12_B19_060704.CEL male brain 2
19
PA009_kyckling_12_B21_060705.CEL male brain 3
21
PA009_kyckling_12_B9_060630.CEL male brain 1 9
PA009_kyckling_13_G16_060705.CEL male gonad 3
16
PA009_kyckling_13_G19_060630.CEL male gonad 1
19
PA009_kyckling_13_G21_060704.CEL male gonad 2
21
PA009_kyckling_13_G9_060705.CEL male gonad 3 9
PA009_kyckling_21_H10_060705.CEL female heart 3 10
PA009_kyckling_21_H12_060705.CEL female heart 3 12
PA009_kyckling_21_H20_060630.CEL female heart 1 20
PA009_kyckling_21_H2_060704.CEL female heart 2 2
PA009_kyckling_22_B10_060704.CEL female brain 2 10
PA009_kyckling_22_B12_060630.CEL female brain 1 12
PA009_kyckling_22_B20_060705.CEL female brain 3 20
PA009_kyckling_22_B2_060630.CEL female brain 1 2
PA009_kyckling_23_G10_060704.CEL female gonad 2 10
PA009_kyckling_23_G12_060630.CEL female gonad 1 12
PA009_kyckling_23_G20_060704.CEL female gonad 2 20
PA009_kyckling_23_G2_060705.CEL female gonad 3 2
The question of interest is what genes that differ between male and female
in the different tissues and as well in general. My concern is if I have to
block for the date/batch and individual effect. In a PCA plot (and other
quality control plots) there isn't sign of any obvious batch or individual
effect. I also used duplicateCorrelation to calculate the correlations for
the batch and individual effects and the results were 0.1 for individual and
-0.03 for batch. Would it be ok to exclude the batch effect from the model
and treat the individual as a random effect or is there a way in limma to
include two random effects?
I also have a more general question regarding lmFit and eBayes. I fitted a
model to the gonad samples only and then compared that to fitting a model to
all samples and extracting the gonad contrast only (see design matrices
below). Obviously the resulting p-values etc differ between the two
approaches but I don't really understand the difference and know which is
the preferred/correct approach.
Only gonad samples:
m f
PA009_kyckling_13_G16_060705.CEL 1 0
PA009_kyckling_13_G19_060630.CEL 1 0
PA009_kyckling_13_G21_060704.CEL 1 0
PA009_kyckling_13_G9_060705.CEL 1 0
PA009_kyckling_23_G10_060704.CEL 0 1
PA009_kyckling_23_G12_060630.CEL 0 1
PA009_kyckling_23_G20_060704.CEL 0 1
PA009_kyckling_23_G2_060705.CEL 0 1
All samples:
mh mb mg fh
fb fg
PA009_kyckling_11_H16_060630.CEL 1 0 0 0 0
0
PA009_kyckling_11_H19_060705.CEL 1 0 0 0 0
0
PA009_kyckling_11_H21_060630.CEL 1 0 0 0 0
0
PA009_kyckling_11_H9_060704.CEL 1 0 0 0 0 0
PA009_kyckling_12_B16_060704.CEL 0 1 0 0 0
0
PA009_kyckling_12_B19_060704.CEL 0 1 0 0 0
0
PA009_kyckling_12_B21_060705.CEL 0 1 0 0 0
0
PA009_kyckling_12_B9_060630.CEL 0 1 0 0 0 0
PA009_kyckling_13_G16_060705.CEL 0 0 1 0 0
0
PA009_kyckling_13_G19_060630.CEL 0 0 1 0 0
0
PA009_kyckling_13_G21_060704.CEL 0 0 1 0 0
0
PA009_kyckling_13_G9_060705.CEL 0 0 1 0 0 0
PA009_kyckling_21_H10_060705.CEL 0 0 0 1 0
0
PA009_kyckling_21_H12_060705.CEL 0 0 0 1 0
0
PA009_kyckling_21_H20_060630.CEL 0 0 0 1 0
0
PA009_kyckling_21_H2_060704.CEL 0 0 0 1 0 0
PA009_kyckling_22_B10_060704.CEL 0 0 0 0 1
0
PA009_kyckling_22_B12_060630.CEL 0 0 0 0 1
0
PA009_kyckling_22_B20_060705.CEL 0 0 0 0 1
0
PA009_kyckling_22_B2_060630.CEL 0 0 0 0 1 0
PA009_kyckling_23_G10_060704.CEL 0 0 0 0 0
1
PA009_kyckling_23_G12_060630.CEL 0 0 0 0 0
1
PA009_kyckling_23_G20_060704.CEL 0 0 0 0 0
1
PA009_kyckling_23_G2_060705.CEL 0 0 0 0 0 1
Any comments or suggestions would be greatly appreciated. Thank you!
Best regards,
Lina Rosenberg
More information about the Bioconductor
mailing list